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ABSTRACT: 
The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large 
amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas 
using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and 
hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical 
regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by 
handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided 
by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and 
color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including 
impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based 
confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method 
combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature 
of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the near-
infrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN’s texture-based approach with multi-
channel spatial-spectral hand-crafted features based on the evidence combination theory. 
 
 

1. INTRODUCTION 

Object classification analysis is a very important topic in urban 
remote sensing. The results of such research are appealing for a 
wide range of data modeling tasks across diverse applications 
including city mapping, urban environment assessment and road 
inventory. While digital cameras are frequently adopted to 
characterize the urban structure and land cover distribution, 
aerial laser scanner (ALS) is increasingly used to directly 
acquire dense 3D urban and topographical information. 
Nowadays, due to the availability of large amounts of labeled 
data and powerful computers, the success of deep learning 
methods is already confirmed on diverse applications. 
Particularly, the interest for convolutional neural networks 
(CNN) has been growing very fast in the last few years, because 
of their impressive results (Krizhevsky et al., 2012; Castelluccio 
et al., 2015) in a series of challenging problems involving image 
classification and retrieval. 
 
Several researchers have applied the image annotation scheme 
to overhead imagery. Early days started with predicting discrete 
class label for each pixel by using feature vector (Benediktsson 
et., 1990; Bischof et al., 1992). However, due to lack of high-
resolution data most of these applications were mainly limited 
to land cover classification. Over recent years, with high 
resolution data there is an opportunity for fine-grained 
classification such as roads, buildings and cars using 
sophisticated features and machine learning algorithms [Yao et 
al. 2012, Niemeyer et al., 2011].  In the computer vision area, 
CNN features have been shown to outperform conventional 
hand-crafted features in visual recognition tasks such as image 
classification (Razavian et al., 2014) and object detection 
(Girshick et al., 2014), making it among the most promising 
architectures for vision applications. It seems that CNNs 
roughly mimic the nature of the mammalian visual cortex and 
exploit the strong spatially local correlation present in natural 
images. A deep CNN that consists of multiple layers of small 

neuron collections offers an alternative efficient approach to 
learn visual patterns directly from raw pixels. 
 
Recently, Razavian et al. (2014) showed that superior results 
compared to highly tuned state-of-the--art systems in visual 
classification tasks on various data sets can be achieved by 
training a linear SVM classifier on CNN feature representation. 
Logistic regression is a widely used technique in statistics due 
to its close relations to other classifiers, such as Support Vector 
Machine and AdaBoost and great robustness. These classifiers 
are well-studied and have been shown to achieve good 
generalization capability in practice.  
 
For semantic labelling in aerial imagery, Gerke (2014) used 
super-pixel features and CRFs for building detection in aerial 
imagery. A previous study on the ISPRS benchmark datasets of 
Wei et al. (2012) used hand-crafted height textures from ALS 
data and multi-spectral features for tree and vehicle 
classification by pixel-level labelling based on AdaBoost. They 
highlighted the most important features for classification of tree 
covers and vehicles, such as NDVI, LiDAR intensity, and 
planarity, which lead to a great accuracy to be validated and 
achieved. The combination of CNNs and other classifiers was 
previously applied to semantic labelling. In the work of Farabet 
et al. (2013) a multi-scale CNN model is used for dense 
classification and labelling in street scenes using a defined 
graph cut model over super-pixels. Apart from sequential 
excitation of multiple classifiers in order, Saeidi et al. (2014) 
used evidence fusion theory to extract multisensory features for 
land-cover mapping. The ability to generate auxiliary 
information like certainty, conflict, and maximum probability 
maps for better visual understanding of auxiliary information 
the decision process makes it more reliable for practice.  
 
The major goal of this work is to perform a workflow for 
semantic labelling in city areas using multi-spectral aerial 
imagery and DSM, which is based on combining a CNNs image 
categorization scheme with conventional pixel-based 
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classification using spatial-spectral features. We propose an 
effective strategy to address urban scene classification based on 
pixel labeling. The CNNs method builds upon categorizing 
local image patch centered at each pixel by sliding the window 
forward over entire image. As a post-processing step, a 
decision-level fusion approach is applied to combine label 
probabilities obtained from both classifiers. The evidence fusion 
framework with Dempster–Shafer theory combines evidence 
from different sources and arrive at a degree of belief that takes 
into account all the available evidence and can be expected to 
boost  the classification accuracy. The aerial data used in this 
study were provided by ISPRS as benchmark datasets for 2D 
semantic labelling tasks in urban areas. The evaluation is based 
on the computation of pixel-based confusion matrices. Based on 
random sampling or cross-validation the approach is evaluated 
to give us the possibility to discuss and conclude the 
performance of the strategy with respect to different scene 
characteristics and method coordination.  
 
In this paper, we explore the possibilities of using a coherently 
combined approach for semantic labelling of overhead imagery: 
deep learned features complemented by hand-crafted features. 
We also demonstrate the utility of combining both approaches. 
 Subsequent sections detail the experiments and our results.  
 

2. METHOD 

In this section, we present the framework for automated pixel 
classification in high-resolution aerial images. We first 
introduce the convolutional neural networks adopted for dense 
feature extraction and learning. We then discuss how we 
complement CNN features with hand-crafted features to further 
realize the classification. Finally, we introduce the concept of 
evidence fusion to refine final pixel labeling results. An 
overview of the proposed semantic pixel labeling framework is 
illustrated in Fig. 1. 

 

Figure 1. Workflow for the proposed pixel labelling framework. 

2.1 Pixel classification with convolutional neural network 

The approach consists of several steps: in the first part, the 
approach relies on deep learning method based on CNN feature 
learning and classification. We follow the work of Farabet et al. 
(2013) by applying a multi-class classifier on the CNNs feature 
representation, which is learned by supervised training of a 
CNN discarding the fully-connected (fc) layers. The deep CNN 
network usually consists of several convolutional layers, which 
are placed alternatively between contrast normalization and 
max-pooling layers. Each convolutional layer computes the 
convolutions between the input and a set of filters. The 
activation function (rectified linear unit - ReLU) performs a 
non-linear transformation while the max-pooling layer 
subsamples the output. 
 
In fact, CNNs can also be used to directly distinguish multiple 
urban classes. The probability distribution over k class labels is 
given by feeding the output of the last fc layer to a k-way soft-
max layer in a supervised way.  However, recent study reported 
that training a margin classifier on CNN feature representation 
outperformed highly tuned state-of the-art systems in many 
vision tasks. Therefore, in this work we adopted the strategy of 
interpreting CNNs features by L1-norm regularized logistic 
regression (LR) classifier to estimate the class labeling 
probability. LR was chosen as classifier due to its robustness 
and efficiency against high-dimensional features and multi-class 
task. The logistic regression solves the optimization problem: 
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where Z is a normalization factor used to result in a probability 
distribution. 
 
Additionally, we applied a coarse-to-fine strategy to train the 
CNNs models in order to correctly classify image/DSM details 
at different scales; we train multi-resolution CNN models with 
input image patch of multiple sizes and concatenate the output 
to build the single feature vector for each center pixel. CNN 
models with three different image patch sizes: 21x21, 37x37 
and 65x65. If we take CNN model with 64x64 pixel input patch 
as example, the first convolutional layer filters the 64x64x5 
image patch consisting of orthophotos, DSM and nDSM with 
32 kernels of size 4x4x5 with a stride of 1 pixel. Then, the 
second convolutional layer takes the output of the first 
convolutional layer as input and filters it with 64 kernels of size 
4x4x32, and so on until the last convolutional layer is reached. 
To train the CNN models respectively with 37x37 and 65x65 
pixels patch size, we simply replace the input patch to the first 
convolutional layer by 9x9x5 and 17x17x5, respectively. All 
other parameter settings remain the same as before. 
Given the test image and the trained CNN model, we can extract 
the feature map from the last convolutional layer by vectorising 
CNN features and concatenating them into a single feature 
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vector. Then, different object classes are classified by applying 
logistic regression weights. For validation, we need a sliding 
window approach to propagate the CNN structure once to the 
whole test image, while the time needed for CNN feature 
extraction is significantly reduced due to the synchronization 
with validation.  
 

 
 

Figure 2. An illustration of the CNN architecture taking the 
example when the patch size is 37 pixels with all the data 
sources included. The network consists of five layers (four 
convolutional layers and one fully-connected layer) with a final 
5-way soft-max loss layer. 
 
2.2 Classification using hand-crafted features 

In Yao et al. (2012), spatial contextual features around pixel 
together with ensemble classifier were found as effective means 
for discriminating various classes in the data labeling contest in 
urban areas. On the other hand, handcrafted spatial-spectral 
features were extracted in a local neighborhood to enable 
traditional pixel-based classification, which can be implemented 
here using different classifiers such as LR or random forests. 
 
Since these features could be complementary to the patch-based 
texture features extracted by the CNN, a separate classifier is 
trained on hand-crafted features to output class probabilities 
which can be combined with those metrics generated by the 
CNN. For each pixel, a multi-dimensional feature vector is 
generated: NDVI, saturation, nDSM, mean of 3 imagery 
channels, the channel vector to indicate covariance, entropy and 
kurtosis of L2 normalized histogram of normals gathered over a 
21x21 neighborhood from the DSM and nDSM. Histogram is to 
arrange normal vectors into 2D histogram bins i.e. elevation and 
azimuth. Moreover, extended morphological profiles of 
multispectral channels were considered to enrich the feature 
vector as well.  
 
2.3 Decision-level fusion 

Two pixel-based classifiers provide us the evidence for 
semantical class labels from different sources. The key idea of 

the class labelling technique in this work is to apply the fusion 
of two independent outcomes of pixel classification schemes, 
which amounts to combining CNN features with hand-crafted 
features to further boost the classification accuracy. Since the 
CNN and RF are such separate approaches, we can assume they 
are independent, given the data and multiply their class 
probabilities to result in the combined probability for each class: 
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where pcombi, pcnn and prf are the combined, CNN and hand-
crafted probabilities per class. C is the set of all the labeled 
object classes. 
 
An alternative to conditional probability method to combine the 
labelling results from separate belief sources is evidence theory 
for reasoning with uncertainty based on statistical inference. 
Dempster–Shafer (DS) evidence theory is a generalized 
probabilistic model that has been often used for sensor fusion. 
DS is defined on degrees of belief level rather than the 
probability to improve the accuracy and robustness of labeling. 
The theory is based on two ideas of obtaining degrees of belief 
from subjective probabilities for a related question and 
providing a method to combine the previous measures of 
evidence of different sources. It uses discrimination framework, 
evidence function and probability allocation (mass) function to 
represent and process knowledge.  
 
Suppose that Θ = C1, C2,…,Cn is the discrimination hypothesis 
space 2Θ of mutually exclusive classes and n is the number of 
classes, therefore basic probability allocation function m is a 
function from 2Θ to [0,1] and it satisfies the requirements of: 
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If there are two or more different evidence sources (e.g. output 
probability of each pixels conditioned on each class from two 
classifiers), the orthogonal sum is used to combine those 
evidences. In our case, we assume that m1, m2 are the 
probability allocation functions corresponding to evidences F1, 
F2 obtained from the two classification schemes and their 
orthogonal sum m = (m1 ⊕ m2) (A) is: 
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K is the total contradiction level of all evidences between every 
two mass sets Bi, which do not intersect with each other, where 
Ai, indicates the mass sets which supplement each other by 
sharing the common class labels from both evidence sources. 
This rule derives and enhances common shared belief between 
multiple sources and ignores or reduces the conflicting (non-
shared) belief through a normalization factor K. 
 
For semantical labeling in remote sensing images, different 
classifiers may generate different class labels, resulting in the 
generation of evidence with high contradiction, so the improved 
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evidence theory with ensemble approach is expected to improve 
the performance by reducing the limitations caused by evidence 
inconsistency. For combining multiple classifiers for remote 
sensing data, the result of each classifier can be viewed as an 
independent piece of evidence. Probability mass function can be 
represented by the classification likelihood of a specific class. 
For example, if a pixel is labelled with the ith class in a 
classifier, the basic probability is mi(Bi) = Pi, where Pi is the 
likelihood of the ith class by the specific classifier. For instance, 
Ai = {building or car}, {building or tree}, or {building or car}, 
because those dual classes are always easily confused with each 
other and need to be particularly treated, whereas Bi = {building 
or car}, {building or tree}, or {building or car}, which do not 
share any common class labels and are used to measure the 
conflict between the two mass sets from two sources. 
 
After the completion of evidence combination for each single 
hypothesis of the multisource model, a decision rule to decide 
which hypothesis is the more realistic is chosen to specify the 
label. Usually the class with maximum combined evidence is 
selected as the final result. 
 

3. EXPERIMENTS 

3.1 Dataset  

The proposed method was applied to the ISPRS benchmark 
dataset (Gerke, 2012), which consists of multiple high 
resolution large image patches, each being a true orthophoto 
captured over Vaihingen, Germany. The dataset also contains 
Digital Surface Models (DSM) generated via dense image 
matching for each patch, which have a ground sampling 
distance (GSD) of 9 cm. Labelled ground truth was provided for 
16 of the areas, and were made up of 6 categories: Impervious 
surfaces, Building, Low vegetation, Tree, Car and 
Clutter/background. Normalised DSM (nDSM) was provided as 
well, where the normalized height is computed based on the off-
ground pixels. The effect of terrain is removed in nDSM 
compared to the regular DSM.  
 
3.2 Experimental design and parameter setting 

The experimental design of our approach is investigated. We 
split the labelled images into training and validation sets. The 
training set consists of several areas and the validation set 
consists of randomly selected dispersed areas, which should not 
intersect with training ones. The evaluation is based on the 
computation of pixel-based confusion matrices. For each class, 
we report the harmonic mean of precision and recall (F1-score). 
We also report the overall accuracy (Overall Acc.). As per the 
different experimental design compared to Paisitkriangkra et al. 
(2014), the training test data were equally subdivided into five 
subsets, each of which should represent a semantic class to be 
classified. We argue that in this case the classification 
performance can be assessed in a more objective way to avoid 
the biased class distribution, especially for cars whose correct 
classification is actually much more difficult to be achieved 
than other classes. 
 
CNN: 
We randomly extract 10000 patches from each class for 
training. The time to train the CNN model is usually under two 
hours using a PC with an eight core 3.4HZ CPU, which is of 
course still dependant on the input patch size selected, the 
kernel size of the convolution layers as well as the number of 
epochs set. The CNN model is trained with stochastic gradient 
decent at a learning rate of 0.001, which is reduced by a factor 

of ten at every 20 epochs. The momentum and weight decay 
parameters are set to 0.9 and 0.0005, respectively. 
 
Hand-crafted features: 
We used the same training data set consisting of 50000 
examples all inclusive as used by CNN method, whose features 
are calculated within each image patch and used along with the 
corresponding ground truth pixel labels to train a LR classifier. 
Note that the Car class is also included within this classifier 
although the features are not supposed to be very discriminative 
for cars. 
 
3.3 Results 

The conditional probability theory and DS theory is applied to 
combining CNN and LR inference probabilities. The 
quantitative validation accuracy obtained using the base line of 
parameter settings is given in Table 1. Whereas the average F1-
score increased by two to eight percent against the CNN and LR 
classification performance, the overall accuracy is improved at 
least by 4%, while the biggest impact on the impervious surface 
class. It seems that the aesthetic appeal of the labelling is not 
explicitly improved by the fusion, but the numeric accuracy 
arguably makes it worthwhile. The main improvements brought 
by DS fusion are to alleviate the regions labelling with 
ambiguous or conflicting probabilities, by removing mislabelled 
and fragmented regions. Figure 3 shows two labelling examples 
whereby the first underlines the benefit of the combination of 
two feature sets and classifies via DS fusion and the second one 
rather indicates that the fusion of two evidence sources is not 
always worth especially when they produced strongly 
inconsistent class labelling probability. 
 
Hand-crafted features  
The accuracy of the LR classifier solely using spatial-spectral 
features on the validation set of images is shown in Table 1. The 
21x21 CNN result is also included there. The accuracy is not 
bad considering the relative simplicity of the features and fixed 
local neighbourhood size, each using only input values from 
single pixels. Table 1 also shows the accuracy of the combined 
probabilities and DS theory when used to label the pixels. The 
overall accuracy improves on the CNN by about 2%, indicating 
that the hand-crafted features do indeed contain information that 
is independent from the CNN features. However, CNN features 
show much higher representativeness and extensiveness of 
information content towards different object classes in urban 
areas. 
 

Method Building
Imp. 
surf. 

Low 
veg. 

Tree Car 
Overall 

Acc. 

CNN 0.74 0.82 0.68 0.80 0.82 0.78 
LR 0.61 0.89 0.65 0.84 0.59 0.72 

LR+CNN1 0.73 0.90 0.72 0.85 0.75 0.79
LR+CNN2 0.76 0.90 0.71 0.85 0.78 0.82 

Table 1. Labelling accuracy (F1-scores) of LR classifier and 
evidence fusion on the validation set. 1Classfication results 
based on conditional probability fusion, 2Classfication results 
based on DS fusion 
 
DSM features 
 
In this experiment, we compare the classification performance 
based on CNN feature with and without the ALS height model. 
All experimental settings are kept identical, except the number 
of channels of convolutional kernels in the first layer. For 
orthophotos, the filter size in the first layer is set to 5x 5x3x32. 
For orthophotos+DSM, the filter size in the first layer is 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-405-2016

 
408



 

changed to 5x5x4x32. We conduct experiments with both raw 
DSM and normalized DSM. Table 2 shows the average F1-
score and overall accuracy of the CNN approach given different 
input data combinations. We observe that it is beneficial to use 
the normalized height as it improves the overall accuracy by 
3%. Opposite to a finding reported previously, we observe that 
the normalized height feature has the same positive impact on 
the detection rate of car (increase by 2%-3%) as on that of other 
objects. In our experiment, we achieved the best accuracy when 
we combine orthophoto with the raw DSM and nDSM (an 
improvement of 2% on the overall accuracy). 
 

Data 
sources 

Buildin
g 

Imp. 
surf. 

Low 
veg. 

Tree Car 
Overall 

Acc. 

CIR 0.74 0.81 0.67 0.79 0.81 0.76 
CIR+DSM 0.74 0.82 0.67 0.80 0.82 0.77 
CIR+nDSM 0.76 0.83 0.70 0.81 0.83 0.79 

All 0.74 0.82 0.68 0.80 0.82 0.78 

Table 2. Performance comparison (F1-scores for respective class) of 
the CNN with different input data sources 

 
Multi-resolution CNN feature 
 
We employed a multi-resolution deep CNN network that 
predicts an output based on the 21x21, 37x37 and 65x65 pixel 
image patches. Experimental results are reported in Table 3. For 
our baseline, we trained a single-resolution CNN network. 
Table 3 shows a significant improvement of multi-resolution 
CNNs over a single-resolution CNNs based on the F1-score and 
overall accuracy, which is supposed to mainly benefit from 
more complete information content in large image patches. It 
can be seen from the results that the larger CNN resolution sizes 
usually lead to significant performance improvements with 
respect to all the object classes.  However, the training time 
increased rapidly as well when a bigger image patch was 
applied to train the CNN. All computations were performed 
using an eight core CPU of an Intel Xeon E3-1245 with 
3.40GHz. 
 

Method Building Imp. 
surf. 

Low 
veg. 

Tree Car 
Overall 

Acc. 
All 0.88 0.92 0.83 0.88 0.97 0.89 

21*21 0.74 0.82 0.68 0.80 0.82 0.78 
37*37 0.83 0.90 0.77 0.84 0.94 0.86 
65*65 0.87 0.92 0.82 0.87 0.97 0.88 

Table 3. Performance comparison (F1-score) between single-
resolution and multi-resolution 
 
3.4 Discussion 

As also highlighted in Farabet el al. (2013) for street scenes and 
Paisitkriangkra et al. (2014), this work demonstrates that CNNs 
can effectively perform dense semantic labelling of aerial 
imagery with the help of nDSM, especially for those with large 
image patch sizes, although features are learned directly from 
original pixels’ values rather than being hand-crafted or 
somehow extracted based on mathematical models. Meanwhile, 
in contrast to the CNN approach which is usually more 
sophisticated and computationally time-consuming, simple 
pixel-level hand-crafted features achieved (even slightly for 
some certain object classes) worse accuracy but with 
significantly lower computational costs. Perhaps this is not 
surprising because the input hand-crafted features are explicitly 
designed to discriminate the target classes: the local distribution 
of normal vectors from DSM highlights low vegetation and 
trees, nDSM highlights the house and cars and infrared channel 
highlights vegetation. In single-channel panchromatic images 

these phenomenologies cannot be relied upon, and the CNN’s 
texture-based approach would be much more accurate. 
 
In Paisitkriangkra et al. (2014) CRF smoothing worked as a 
global filter to combine the two independent classifiers to 
generate final labels. It had a positive effect on accuracy, 
whereas in former work the accuracy decreased. DS provide a 
probabilistic framework for combining these detections from 
multiple belief sources for the classifier labelling as well. 
Further along with paper they concluded that the CRF improved 
the labelling visually by removing speckle from classifier output 
labels, which yet does not mean to necessarily lead to better 
results for the quantitative evaluation. Since the classification 
based on CNN and spatial-spectral features is applied with a 
sliding window, it does not have access to object-level context 
during the classification. Although CRFs working on nodes 
constructed on the different image levels could provide object-
level constraints using higher-order cliques or a hierarchical 
approach, the DS fusion is expected to encode the essential 
feature at high spatial level from both classifiers via a coherent 
inference and judgment, if the local neighbourhood covers a 
reasonably large area. The performed experiments give rise to 
the fact that the pixel labelling based on CNNs with a single 
large patch can even generate perfect labelling results for all 
classes, without considering the time complexity incurred. 
 
CNN and spatial-spectral features based on LR are largely 
complementary to each other, thus resulting in almost all 
categories of classification performance benefiting from 
considerable improvement after non-selective binding, except 
vehicles. Thereby the proof is obtained by experiment that DS 
theory can make decisions at single-point level on the two 
feature sets to obtain mutual enhancement, but for small targets 
like vehicle DS fusion leads to information loss while carrying 
out the judgment. The major implication is: selective decision 
level fusion on single-pixel tags – the relevant pixels to 
integrate CNN with LR outputs can balance the trade-off 
between classification accuracy to be achieved and 
computational time to be required. 
 

4. CONCLUSION 

This work demonstrated that CNNs can not only effectively 
perform semantic labelling of aerial imagery by learning the 
texture features derived directly from the data rather than being 
hand-crafted, but also would achieve better accuracy in multi-
channel images whereby spatial-spectral features around local 
neighborhood cannot be always relied upon. In spite of the 
computational cost of the CNN approach, the pixel-level 
classification based on local spatial-spectral features does not 
necessarily mean to achieve much worse accuracy. The DS 
theory provides a probabilistic framework for combining the 
class labelling results, when both classifier outputs are 
consistent and even complement each other. The competitive 
classification accuracy is explained by the nature of input data: 
e.g. the DSM and near infrared channel, and also attributed to 
feature/decision-level fusion of CNN texture-based approach 
with multi-channel spatial-spectral features generating more 
coherent labelling probability based on evidence combination 
theory.  
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Figure 3. Two examples of classification results for complementary (top) and conflicting (bottom) scenes. From left to right: ground 
truth, input image CNN labelling, combined classifier labelling 
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