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ABSTRACT:

Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution
remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works
mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more
automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs), called S-
CNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method.
Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from
the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out
by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals.
Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a
large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate
the efficiency and robustness of our proposed S-CNN-Based ship detector.

1. INTRODUCTION

The detection of inshore and offshore ships has an important
significance both in military and civilian fields. It can not
only supervise fisheries, but also manage marine traffics to
ensure the safety of coast and sea. Traditional ship detection
requires manual observation with all kinds of ships, which
consumes manpower and material resources greatly. With the
development of remote sensing, satellite and artificial intelligence
technologies, fast and accurately detecting ships based on remote
sensing images has been becoming an urgent issue.

Two kinds of images are widely used for ship detection: synthetic
aperture radar (SAR) images (Tello et al., 2005; Xing et al., 2015)
and optical remote sensing images (Liu et al., 2014; Xu et al.,
2014). The SAR images have a wealth of information on the sea.
With the big difference of ships and sea in SAR images, ships can
be separated with sea easily (Wang et al., 2014). However, both
the low resolution of SAR images and the complicated sea clutter
make it much harder to detect small-sized and cluttered ships.
Another kind of images is optical ones. With the advancement of
satellite technology, high resolution remote sensing images can
be provided quickly and easily (Shi et al., 2014). Optical satellite
images with high resolutions have more details for observed
ships in textures, shapes and edges, which are very important for
detecting small-sized and cluttered ships.

Gray intensity and shape features have been widely used to
detect ships. The ship detection approaches based on gray
intensity statistical characteristics extract ships by segmenting
images with gray intensity features. Due to the great gray
intensity distinction of background and objects, these approaches
can produce good detection results.Chu et al. (2007) used
information entropy to quantify this distinction andZhang et al.
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(2010) put morphological contrast into calculation to describe
gray feature difference.Huo et al.(2015) presented a saliency
analysis in ship detection, with the same principles as the human
vision system. The results are stable in calm water conditions and
can efficiently deal with offshore ship detection. However, when
cloud is covered or large sea wave exists, this approach has more
false alarm and leakage phenomenon. Also, it cannot efficiently
detect inshore ships often connected or overlapped with lands.

The shape feature based approaches detect ships with rich edge
information of ships. Due to the need of ship design considera-
tion, ships are artificially constructed with some specific shapes,
such as narrow bow area and parallel hull edges.Liu et al.(2014)
applied edge information to robustly detect offshore ships from
high resolution remote sensing images. But when extracting an
object shape in a complex coastal environment, the detection
accuracy based on specific characteristics decreases quickly. To
solve this problem,Kun and Xuequan(2004) proposed an ap-
proach with prior knowledge of harbor in the land. It can separate
the harbor area in the land and the ocean one, which result in that
the ship targets located in the ocean area can be detected quickly
and accurately. However, for densely distributed ships, how
to remove shadows between ships and the land area with good
segmentation is very difficult. To detect ships more automatically,
Xu et al. (2014) introduced robust invariant generalized Hough
transform (RIGHT) into shape extraction by a robust shape model
automatically learned via iterative training. Although it can get
more widely applicable features from training, RIGHT cannot
represent most of ship characteristics with only shape feature.

In summary, all these methods take significant efforts on ship
detection in optical images. However, some issues still exist,
like how to integrate more ship features into detection, and how
to detect all kinds of inshore and offshore ships together more
automatically and quickly. This challenge also happens in other
object detection or recognition issues. To solve these problems,
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Figure 1: The flowchart of our proposed ship detection system.

a lot of machine learning technologies had been put into target
detection, like neural network (Roth, 1990) and support vector
machine (SVM) technology (Burges, 1998). With the rise of
deep learning, scientific researchers pay more attention on object
detection by convolutional neutral networks (CNNs) (Hu et al.,
2015). It can not only deal with large scale images, but also train
features automatically with high efficiency. However, in ship
detection domain with high resolution remote sensing images,
there is still a lack of evaluation experiments based on CNNs.

The concept of CNN was inspired by (Fukushima, 1980), who
presented “neocognitron” as a hierarchical and sift-invariant
model, which is an early attempt in pattern recognition. Neocog-
nitron puts one vision system into many subschemes and uses
multi-level cascade feature plane for recognition. Whereafter,
Lcun et al.(1998) proposed to train CNN by the backpropagation
algorithm and firstly obtained feature recognition results. In the
past two decades, CNN had been gradually ignored with the rise
of other efficient machine learning techniques, such as boosting
and support vertor machine (SVM). While with the breakthrough
in (Krizhevsky et al., 2012), people focused on CNN once again.
CNN can achieve a big success with a large-scale dataset. During
Large Scale Visual Recognition Challenge 2013 (ILSVRC2013),
the top five rankers with minimum error ratios were all achieved
based on CNN. It can not only deal with large scale images, like
remote sensing image, but also train features automatically with
high efficiency.

Based on the advantages of CNNs, we propose to incorporate
the high-capacity CNNs to automatically extract ship features
for detection in this paper. Connected with CNN requiring a
large number of ship samples in training part, more kinds of
ship features can be put in the feature model. Detection requires
localizing objects within a test image, which has a big difference
with image classification. A lots of approaches did localization
by using a sliding-window detector, which has been used widely,
typically on constrained object categories, such as faces (Baluja
et al., 1998) and pedestrians (Sermanet et al., 2013). In our
detection application, the ships varied in types (such as barges
and warships), shapes, and poses, which make the use of the
sliding-window detector very challenged and even impossible
due to the need of a large amount of length-width ratios for
sliding windows. Inspired with Regions with CNN feature
approach (R-CNN) (Girshick et al., 2014) that combines region
proposals with CNNs, we propose an integrated ship detection
system that bridges the gap between ship proposal extraction
and CNNs, named S-CNN. Our proposed system consists of

two modules, as illustrated in Figure1. The first module aims
to extract ship proposals from a high-resolution remote sensing
image with two effective methods, the ship model based detection
and saliency based one. Two ship models, the “V” ship head
model and the “||” ship body one, are proposed to localize the
ship proposals from the line segments extracted from a test image,
which can produce stable results for both inshore and offshore
ships with enough large sizes and clear boundaries. For ships
with small sizes and/or without clear boundaries due to the ship
wave, the saliency based method is more efficient. The second
module focuses on the training and detection of CNN. The CNN
model is trained from a large set of training ship samples in
advance. The ship proposals extracted in the first module are
fed into the trained CNN for efficient detection. Experimental
results on a large amount of representative remote sensing images
with different kinds of ships with varied poses, shapes and scales
demonstrate the efficiency and robustness of our proposed S-
CNN-Based ship detector.

The remainder of this paper is organized as follows. The
proposed two ship proposal detection methods are detailedly
described in Section 2. The training and detection of CNN
are presented in Section 3. Experimental results on a large
amount of representative high-resolution remote sensing images
are presented in Section 4 followed by the conclusions drawn in
Section 5.

2. SHIP PROPOSAL DETECTION

2.1 Preprocessing

To make the ship detection more efficiently, we apply a series of
preprocessing operations on a test image, which are comprised of
denoising, enhancement and segmentation. The image denoising
operation reduces the noises caused by optical image sensors
and/or atmospheric radiation and the image enhancement increas-
es the image contrast. These two operations can make ships in
the image more prominent for detection. The common image
denoising methods are median filtering, spatial low-pass filtering,
local smoothing and so on. While image enhancement uses some
operator, such as Sobel, Prewitt, Roberts and Laplace operators.
Rough image segmentation is used to quickly separate the sea
area and the land one based on their color difference. In addition,
via image segmentation, some individual ships with clear sea
background can be efficiently segmented into one region, which
makes the offshore detection more easy. In our system, we used
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median filtering and Laplace operator for image denoising and
enhancement. The test image was segmented using the Edge
Detection and Image Segmentation (EDISON) system by the
Mean Shift method (Comaniciu and Meer, 2002). The Mean Shift
achieves the image segmentation results by clustering gradually,
which can separate ships and sea accurately, especially in an
offshore ships image.

2.2 Simple Feature Extraction

Simple feature extraction is significant for efficiently detecting
valid ship proposals. By extracting simple features, line segments
and saliency, the expression of ship shape and texture features
are convenient to be described. Line segment features are the
prior step for detecting ship proposals based on two ship models,
the ship “V” head model and the ship “||” body one. While the
saliency feature is needed in the saliency detection.

Two highly efficient and advanced line segment detectors, LS-
D (Grompone et al., 2010) and EDLines (Akinlar and Topal,
2011), can be efficiently used for extracting line segment fea-
tures in our application. LSD improves the algorithm proposed
by Burns et al.(1986) based on the Helmholtz principle, which
combines phase grouping. EDLines extracts the line segments
from the edge map based on the least square algorithm and the
minimum error principle, which has a high precision in a short
time.

Saliency feature extraction aims to achieve a similar function
of human eye observation system. The famous ITTI salient
detection model (Itti and Koch, 2000) integrates gray feature,
direction and color information to construct basic physiological
visual similar features. However, the results with the orientation
channel usually turns out to be less useful for salient object
segmentation (Frintrop et al., 2015) since it assigns high saliency
values to object edges, and makes object segmentation difficult.
Thus we extract the same saliency features: color and intensity
ones with (Frintrop et al., 2015) to generate the salient map. We
extract color features with the intensity and newly definedRG
andBY color channels, which are calculated asI = (R + G +
B)/3, RG = R − G andBY = B − (R + G)/2, respectively.
Thus, the salient map equation is defined as follows:

S(p) = g (I(p) +RG(p) +BY (p)) , (1)

where S(p) represents the salient map value at the pointp

in the image andg(·) denotes a combination function of three
channels. In our system, we calculated three channels with
equal weights, so the salient map value for a pixel is ob-
tained by simple addition of three channel values, i.e.,S(p) =
(I(p) +RG(p) +BY (p)) /3.

2.3 Ship Proposal Detection

Based on the above extracted two kinds of features, line segment
and saliency ones, we combine two approaches to detect ship
proposals. The first one is the ship model based detection
originally and specifically designed for our application. In most
of ships, there exist two significant characteristics, V-shaped
ship head and parallel ship body, which is described as the “V”
ship head model and the “||” ship body one, as illustrated in
Figures2(a) and (b), respectively. As the “V” ship head model
shown in Figure2(a), we search the line segments around the ship
head candidate points, and calculate the angle of the nearby line
segments. If the acute angle formed by two line segments meets
some condition, i.e., less than some predefined threshold, these
two line segments will be considered as a ship head candidate.
Since ship heads may be confused with some land structures or

(a) (b) (c)

Figure 2: Illustration of ship models: (a) the “V” ship head
model; (b) the “||” ship body model; (c) the ship model
candidates.

(a) (b)

Figure 3: An illustration of two mask regions for ship validation:
(a) the sector mask regionMS ; (b) the semi-circle mask region
MC .

other nearby ships, we propose to further validate each ship head
candidate with at least one ship body line segment existed close
to the head candidate within some suitable range and angle with
respective to the two line segments of the ship head.

Due to the existence of many other non-ship constructions or
even ship internal structures with multiple lines similar as the
ship head structure, we need to further validate the ship head
candidates. Figure4(e) shows a plausible ship head candidate
formed by a ship body line segment and a land one. Figure4(i)
shows another plausible ship head candidate formed by two
line segments extracted from ship internal structures instead
of from the ship boundary. To eliminate such these plausible
candidates, the segmentation mask image for non-sea areas can
be sufficiently utilized for validation. Firstly we define two mask
regions, the sector mask regionMS and the semi-circle oneMC ,
as illustrated in Figure3. The sector mask regionMC is a fan-
shaped one with some radius formed by two line segments of a
ship head candidate, as shown in Figure3(a). While, the semi-
circle mask regionMC is formed by the semi-circle with the same
radius as that ofMC followed by the removal ofMC from the
semi-circle region, as shown in Figure3(b). In Figure4(e), a
ship head candidate is formed by a real ship head line segment
and a land one. Most of pixels in this angle region fall in the sea
area so the area of the sector mask regionMS is close to zero,
which can be efficiently utilized to eliminate such these plausible
candidates. While, in Figure4(i), a plausible ship head candidate
is formed by two line segments from ship internal structures.
We observe that the area ratio ofMS andMC is much smaller
than that in the real ship head candidate as shown in Figure4(a).
Naturally, we further validate those ship head candidates based
on the following two conditions:

{

Area(MS) > T1,
Area(MS)
Area(MC)

> T2,
(2)

whereT1 andT2 are two thresholds adaptively set according to
the resolution of the test image.

As the “||” ship body model shown in Figure2(b), we search two
approximately parallel line segments as a ship body candidate.
Similarly, we further validate each ship body candidate with
at least one ship head line segment existed close to the body
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Examples of ship head candidate validation. (a),
(e) and (i) show the partial regions of a test remote sensing
image containing ship candidates. (b), (f) and (j) show the
segmentation binary results of (a), (e) and (i), respectively. In
(c), (g) and (k), the cyan regions are the overlaps of their section
mask regionsMS and the connected regions containing ship
candidates, respectively. In (d), (h) and (l), the cyan regions
are the overlaps of their semi-circle mask regionsMC and their
segmentation images, respectively.

candidate within some suitable range and angle with respective
to the two line segments of the ship body. Figure2(c) presents an
illustration of the ship candidates. Two red vectors namedAB
andCD are met with the ship head model, anda andb in blue
are two line segments satisfy the ship body model. However, the
black line segments are not met with the ship body model due to
that they are too short and the candidate comprised of two green
vectorsc andd is eliminated by the angle constraint.

Based on the saliency map of different characteristics extracted
from a test image, we propose to detect ship proposals from
salient image regions from the saliency map. By simply thresh-
olding the saliency map with some suitable threshold, we get a
salient binary image, from which we collect separated blobs as
the ship proposal candidates. To suppress the noise, those blobs
without an enough saliency value, which is the sum of all pixel
saliency values in that blob, will be eliminated.

2.4 Multi-Scale Searching

Different kinds of ships have different shapes and sizes, and
present details to various extent in images captured at a high
resolution. With too much details in a high resolution remote
sensing image as shown in the Figure5(a), a lot of small and
fragmented line segments were detected, it is hard to discern
the ships out from the detected line segments. In order to
efficiently detect ships with different sizes from a high resolution
remote sensing image, we need to collect all the ship candidates
in multiple scales as the ship proposals. A high resolution
test image is sequentially down-sampled with different down-
sampling scales, which results in an image pyramid. When we
only consider to detect the warships with relatively fixed large
sizes, we just search the candidates from some suitable low-
resolution down-sampled image. If we expect to detect all kinds
of ships with different levels of sizes, we need to search all
candidates from the original image and all the down-sampled
ones. Figure5(b) shows an example of the low-resolution image

(a) (b)

Figure 5: An illustration of line segments extracted from a
warship image in different resolutions: (a) in the original
resolution; (b) in the low resolution with a down-sampling scale
factor of 1/4.

down-sampled from the original image shown in Figure5(a) with
a down-sampling scale factor of 1/4. From Figure5, we observe
that there exist a lot of small and fragmented line segments in
the original image, which are not suitable for figuring out the
warships based on the ship models, however, just several main
line segments are extracted from its corresponding low-resolution
image, which are much easier to form the ship candidates from
them.

2.5 MBR Adjustment

After we detect out the ship proposals based on the ship models
and the saliency map, the boundaries of proposals are extracted
by their minimum bounding rectangles (MBRs) on the segmented
binary mask image. The MBR is obtained totally depending
on the segmentation result in preprocessing. Due to inaccurate
segmentation, some ship pixels are not included in the MBRs
of ships. To generate more accurate ship proposals, we need to
adjust their MBRs, which will be fed into the later CNN. For the
ship proposals determined by the ship models, we can adjust the
MBRs by line segments of ship heads or bodies.

In the “V” ship head model, the symmetrical axis of the ship
body can be figured out by equally splitting the acute angle
formed by two straight line segments of the ship head. If
the body orientation of a MBR and the symmetrical axis of
the ship is almost consistent, the MBR has the right way.
However, if the body orientation of the MBR is far away from
the symmetrical axis, we need to adjust the MBR direction to
make them consistent. In the “||” ship body model, we figure out
the symmetrical axis from the almost parallel line segments of
the “||” ship body in the same way by splitting the acute angle
formed by those parallel line segments. We adjust the MBR of a
ship proposal as the same for the “V” ship candidates.

Specifically, for the “V” ship head model, we calculate the
inclination angles of two ship bow line segments, from which
the direction of bisector line of “V” can be obtained. Letα be the
inclination angle of the bisector line, which is the correct main
direction of the MBR, andβ bet the original MBR inclination
angle. The MBR adjustment is implemented by rotating the
inclination angle of the MBR main direction fromβ toα. We do
the same operation for the “||” ship body model. As for an initial
vertexx of the MBR, the corresponding coordinates of rotated
MBR’s vertexx′ can be calculated as:

x
′ = R(x− xc) + xc, (3)

wherexc denotes the coordinate centroid of the original MBR
and theR stands for the 2D rotation matrix defined by the
rotation angleθ = α − β. Figure6 shows two examples for the
MBR adjustment, from which we observe that the MBRs after
adjustment more accurately cover the whole ship bodies.
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(a) (c)

(b) (d)

Figure 6: Two examples of MBR adjustment: (a)-(b): original
remote sensing images; (c)-(d): the corresponding connected
mask region of (a) and (b), respectively. The red rectangles stand
for the original MBRs obtained from the segmentation mask
image while the adjusted MBRs are marked in green rectangles.

3. SHIP DETECTION WITH S-CNN

3.1 Introduction to CNN

The popular approach of training a multi-layer neutral network
is the back-propagation algorithm, in which, there are an input
layer, multiple hidden ones and an output one. With each 2D
input vector fed to the input layer, each output result of the input
unit is equal to the corresponding component of the input vector.
In general, each output layer can be given by (Duda et al., 2000):

Xl
j = f

(

d
∑

i=1

Xl−1
i ωl

ij + blj

)

, (4)

wherei is an index value of the input layer unit,j is an index
value of the hidden layer unit,wl

ij denotes the weight between
the input layer uniti and the hidden layer unitj, blj denotes
additive bias given by each layer map, andf(·) expresses the
output activation function.

As a kind of neutral network based on multi-layer networks,
CNN also has the input, hidden and output layers. In order to
efficiently deal with large-scale data, CNN usually has a deep
neutral network with plenty of hidden layers and parameters. In
traditional neutral networks, training with so many parameters

will be a big challenging, so CNN introduces three ideas to
reduce the number of parameters: local receive fields, shared
weights, and multiple convolution kernels. Local receive fields
mean to change the neuron sensory area from global to local.
As human recognition to outside world, the spatial relation of
an image is closely related to local pixels, and those far away
always have weak correlation. The conversion from global to
local can cut down the number of parameters greatly. The other
way introduced by CNN is to share weights, which is inspired
by the theory that humans can use the feature from one part to
another in an image when the statistical properties of two parts
are similar. Therefore, making a convolution between learned
features based on small parts of the image and the original large-
sized image, a different feature activation value for any position
in this image can be acquired. Feature activation values and
learned features from small parts can replace features learned
from all images, which can quickly decrease the number of
parameters. However, when parameters are cut down greatly, a
new problem is arose, i.e., only one convolution kernel cannot
take sufficient features. The third idea comes up to solve
this problem: multiple convolution kernels. The CNN derives
multiple kernels for image convolution and generates multiple
convoluted images which can be seen as different channels of the
image. Based on these three ideas and the neutral network layer
calculation approach, the convolution layer can be calculated as
follows (Bouvrie, 2006):

Xl
j = f

(

∑

i∈Mj

Xl−1
i ⊗ kl

ij + blj

)

(5)

whereMj represents a selection of input maps,kij is convolution
kernels between the input layer uniti and the hidden layer unitj,
and the symbol ‘⊗’ means operation of convolution. Compared
Eq. (5) with Eq. (4), we can see that for a particular output map,
the input maps will be convolved with different kernels, which
is an improvement in CNN. Thel-th convolution layer can be
obtained from the(l − 1)-th layer with Eq. (5).

With three above introduced ideas, the feature training in CNN
can derive on the right track, but it may also generate too many
features, which possibly result in that the over-fitting problem
comes out with feature classification. Thus the sub-sampling
layer is proposed. Just like a natural idea to aggregate the
characteristics of different positions when people try to describe
a large image, the sub-sampling is another kind of pooling to
collect statistically with a part of image’s feature. It is also a
good way to reduce the computation cost and to gradually build
up spatial invariance. The sub-sampling layer is calculated as
follows:

Xl
j = f

(

Bl
jD(Xl−1

j ) + blj

)

(6)

whereD(·) represents a sub-sampling function andBl
j is a mul-
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tiplicative bias whileblj is an additive bias. Both multiplicative
bias and additive one are all corresponding to each output layer.

With the above mentioned ideas and core equations calculating
the convolution layer and the sub-sampling one, the convolutional
neutral network becomes more integrated. Figure7 shows the
flowchart of the CNN-based ship detection system, from which,
the commutative construction of the convolution layer and the
sub-sampling layer is clear.

3.2 Detection with S-CNN

For our specific detection task, we first train the CNN model for
ship detection from a large dataset and then test the trained CNN
model on the ship proposals extracted by the ship models and the
saliency map. In this paper, we call this specific CNN model as
S-CNN.

To achieve a good S-CNN model widely suitable for efficiently
detecting different kinds of ships with different shapes and
different sizes, we need to collect enough samples, especially
positive ones for training. We firstly collected a large set of
high-resolution images containing different kinds of ships and
then marked all the positive images manually. In general, two
kinds of object samples can be put into CNNs. The first one
is comprised of small scale images drawn from original ones,
which just contain one object in each image. Another consists
of large scale images in which there exists one or multiple
objects marked manually in an image. In our training system, we
manually marked the second of ship samples for training. A large
amount of negative ship samples can be automatically collected
from those images containing marked ships by ensuring that the
collected negative samples have no enough overlap with marked
positive ones.

After training the S-CNN model is finished, the ship proposals
extracted by the ship models and the saliency map will be
fed into S-CNN for testing. In this procedure, we compute
the CNN features of each proposal to derive the similarity of
candidate proposals with ship features, whose details can be seen
in (Girshick et al., 2014). Proposals extracted by our approaches
make the S-CNN test more pertinent because these proposals tell
us which areas have ship targets with high possibilities. It also
solves the uncertain length-width ratio problem in the sliding-
window method with higher speed and efficiency. While training
features and detecting ships just with CNN having features
extracted by machine (deep learning) with generous samples
generate more preeminent results in wide applicability.

Completed by the CNN test, each ship proposal has an activation
value. Due to that ship proposals may be overlapped, we apply a
non-maximum suppression operation to eliminate the proposals
with low activation values.

4. EXPERIMENTAL RESULTS

To completely test our proposed S-CNN-based method to detect
ships from high-resolution optical remote sensing images, we
individually evaluated our proposed ship proposal extraction
method and the whole ship detection performance with the
trained S-CNN model.

4.1 Evaluation on Ship Proposal Extraction

In this experiment evaluating the performance of our proposed
ship proposal extraction method, the test data set we used
is comprised of high-resolution optical remote sensing images

collected from Google Earth with a preferred resolution of
0.12m and with a preferred resolution of0.25m containing
some warship objects. These remote sensing images were all
collected by Landsat-7, QuickBird, IKONOS and SPOT5, which
are from city harbors or naval military bases where a lot of ships
or/and warships gathered. In order to test the effectiveness of
our proposed ship proposal extraction method, lots of images
containing different types of ships with different sizes and shapes
were picked out for testing. This collected test data set is
divided into three categories. The first category of images
contains inshore ships connected with the land area, as shown in
Figure8(a). The second one includes far apart offshore ships as
shown in Figure8(g). The third one contains large-scale warships
with a large length-width ratio as shown in Figure8(m). All these
test images were clipped with a same resolution of2000 × 2000
pixels.

In this experiment, we extracted the line segments by ED-
Lines (Akinlar and Topal, 2011) with their recommended param-
eters. In the ship model based proposal extraction and validation
parts, the parameters were set empirically. The two thresholds
T1 andT2 in Eq. (2) were set as 0.4 and 0.6, respectively. In
the salient map extraction part, we weighted theI , RG andBY
channels equally. The calculated saliency maps were thresholded
by a fixed value of 70. In total, our ship proposals were extracted
from four-layer image pyramid. In general, warship proposals
can be more efficiently extracted with a down-sampling scale
factor of 1/4.

Figure 8(b), 8(h) and 8(n) show extracted line segments from
three representative example images by EDLines, from which we
observed that our used line segment detector is very efficiency,
which extracted most of line segments in object edges and
textures, like ship body edges “||” structures and head line
segments “V” shapes, which are necessary for applying the ship
model to successfully extract the ship proposals. Compared with
inshore ships, offshore ones and warships, EDLines has more line
segment details on land in offshore ships and warships, and it
illustrates that the extraction results of inshore ships as shown
Figure8(d) and warships as shown in Figure8(p) with the ship
model method have a better effect than those of offshore ships
as shown in Figure8(j). Figure 8(c), 8(i) and 8(o) illustrate
the salient maps of these images, from which the ships are
obviously observed with high saliency values. Due to that some
land areas have the high saliency values too, the offshore ship
detection without cluttered lands as shown in Figure8(i) have
better proposal extraction results, compared with those shown
in Figure8(c) and8(o). Therefore, the combination of the ship
model and saliency methods creates a preeminent performance to
extract ship proposals.

4.2 Evaluation on Ship Detection

Our proposed S-CNN-based detection algorithm was implement-
ed using the open source CNN, which is depended on the Caffe
CNN library Jia et al.(2014). Totally, we trained the proposed
S-CNN model with 1010 high-resolution remote sensing positive
images containing 5270 ship positive samples with varied types,
sizes and shapes, and 1576 negative images without any ships
as the negative samples. Averagely, there are 5.2 ships in each
positive image, which is in accordance with the general standard
in deep learning. The used non-maximum suppression value in
post-processing after detection was set as 30%, and the activation
value of the ship estimation was set as 0.7. Some S-CNN
detection results after CNNs testing are shown with blue and
green rectangles in Figure9 where the ground truth that we
labeled manually is shown with red rectangles. Sometimes, the
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positively detected ships perfectly fit the ground truth. In these
cases, just red rectangles are visible. Green rectangle means the
wrong detected results. In Figure8, the first row of images are
detection results with inshore ships. Almost all detection results
are accurate, which demonstrates that our algorithm can detect
inshore ships very well. And it produced the same good results in
the second row of offshore ships. In the specially selected third
row of images, there exist some wrongly detected ships. The
wrong detection mostly appears in the land area, where some
objects, like rooftop, have similar structures with ship textures.
This shortcoming can be improved by selecting enough negative
samples, especially similar to the real ships in the local structures,
for training to some extent. In some images especially with
different-sized ships, omission detection happens occasionally,
which indicates that our proposal detectors need to be further
improved.

Both precision and recall are often used to quantitatively evaluate
detection performance. In the test data set containing 3545
inshore ships and 1520 offshore ships, our detection results are
listed in Table1 whereNg represents the number of ground truth,
Nt is the number of ships validated by S-CNN, andNr represents
the number of correctly detected ships. With these numbers, the
recall and precision can be calculated as:

{

Recall = Nr/Nt,
P recision = Nr/Ng .

(7)

From the results shown in Table1, the recall and precision of
inshore and offshore ships are both above 90%. Specifically, a
high precision of 99.1% was achieved for offshore ships.

Table 1: Precision and recall of our proposed S-CNN-based ship
detector on different data sets.

Ng Nt Nr Recall (%) Precision (%)
Inshore ships 3545 3731 3399 91.1 95.9
Offshore ships1520 1539 1506 97.9 99.1

5. CONCLUSION

In this paper, we proposed a novel S-CNN-based ship detection
framework for high-resolution optical remote sensing images. To
sufficiently train the proposed S-CNN model, we collected 5270
positive samples with different types, sizes, and shapes from
more than one thousand high-resolution remote sensing images
and a large amount of negative samples. The whole detection
framework is comprised of two stages. In the stage, we creatively
extracted ship proposals based on two ship models, the “V”
ship head model and the “||” ship body one, formed by line
segments and the saliency map. The minimum bounding rect-
angles (MBRs) of these ship proposals, which were calculated
from the segmentation binary map, were further refined based on
extracted line segments. In the second stage, we fed the extracted
ship proposals with refined boundaries into the trained S-CNN
model for validation. Experimental results demonstrate that our
proposed S-CNN-based method can provide enough proposals
with a very high recall and improves the ship detection accuracy
compared with the traditional R-CNN method.
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Figure 8: The results of ship detection system process. (a), (g) and (m) are images with inshore ships, offshore ships and warships
respectively. (b), (h) and (n) show the line segment results and (c), (i) and (o) are images with results of salient map. In (d), (j) and (p),
the ship proposal detection results based on ship model method are showed, and in (e), (k) and (q), ship proposal detection are labeled
with salient map. (a), (g) and (m) are ship detection final results.
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Figure 9: The results of our proposed ship detection system. (a) - (f) are inshore ship detection results, and (g) - (l) show some offshore
ship detection results. (m) - (r) are special selection results which have error or lack detection.
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