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ABSTRACT: 

 

Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial 

autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method 

can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change 

between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local 

window. Besides, Geary’s C has also been proven to well characterise and qualify the spatial correlation between each pixel and its 

neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified 

pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field 

method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and 

its neighbourhood pixels. The last step employs a support vector machine (SVM) for the classification of multi-features (e.g. the 

spectral feature and spatial correlation feature). In order to validate the effectiveness of the developed method, experiments are 

conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the 

developed method outperforms the traditional method in terms of classification accuracies. 

 

 

1. INTRODUCTION 

High-spatial-resolution remotely sensed imagery has been 

considered as an important data in urban application. As it 

contains not only a large amount of spectral information but 

also rich spatial information. Additionally, the latter is one of 

the characteristic features in images for its robustness. Thus, 

representing and modelling spatial structure become a vital step 

in high-spatial-resolution remotely sensed imagery 

interpretation and information extraction. 

Methods of remotely sensed imagery classification using spatial 

autocorrelation characteristics are well established. Spatial 

statistics are calculated on the variability in digital numbers or 

brightness values within local windows in addition to the values 

of the original spectral bands (Purkis, 2006).The image texture 

can be described on two dimensions. The first dimension is its 

tonal primitives and the second dimension is for the description 

of the spatial dependence or interaction between the primitives 

of an image texture (Haralick, 1979). The image spatial 

autocorrelation can be used to describe the interaction between 

the pixel (Craig, 1979) and (Campell, 1981). Getis Index, when 

used in remote sensing image processing, not only calculates 

spatial dependence but also describes the impact on the central 

pixel from its neighbourhood pixels (Wulder, 1998). Moran’s I 

and Geary’s C are relatively more powerful than Getis Index in 

characterizing complex spatial arrangementsof objects and 

features in the classification of remotely sensed images (Myint, 

2007.).  

Among these general spatial autocorrelation statistics, Geary’s 

C can describe the whole spatial distribution pattern well in 

terms of the local difference between pixels of an image. It dues 

to its sensitivity to edge information and leads to extracting 

heterogeneous regions better. 

Unfortunately, the result contains much small patches. However, 

we introduce the data field method to filter and limit the noise. 

By considering each data object as a particle with mass related 

to data space, we can use the data field method to describe the 

complex interaction among data objects (Li, 2005). In addition, 

we enhance the original data field method by considering each 

pixel in the window as the central pixel to compute statistical 

characteristics between it and its neighbourhood pixels. 

The remainder of this paper is organized as follows. Section II 

introduces the data field method and Geary’s C statistic 

respectively and also tells the similarity and difference between 

them. The image classification method used in this paper is 

presented in Section III. In Section IV, a comparative study is 

made between the proposed method and some traditional 

methods. Section V concludes this paper. 

 

2. METHODOLOGY                                                   

2.1 Geary’s C Statistic 

Geary’s C statistic is a local indicator measuring spatial 

dependence for each pixel. The standardized Geary’s C statistic 

is defined as (Geary, 1954):  
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where  C = value of Geary’s C 

 N = the number of spatial units indexed by i and j 

 X = variable of interest 
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 X= the mean of X 

 Wij = matrix of spatial weights 

 W = the sum of all wij 

 

Wij = 1 if point j is within the local window of point i; otherwise 

Wij = 0. And the value of C lies between 0 and 2. 1 means no 

spatial correlation. The value lower than 1 indicates increasing 

positive spatial correlation, while values higher than 1 illustrate 

negative spatial correlation. Geary’s C is used to calculate the 

degree of local spatial autocorrelation in this paper. 

 

2.2 Data Field 

Inspired by the short-range nuclear forces field theory in the 

physical world, data field used in images processing is a method 

taking each pixel in the image as the data object with mass (Wu, 

2012).  
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where  φx(y) = potential value 

 ||y-x|| = the distance between object y and point x 

 m= the mass of object y 

 k= the distance index 

 

The mass relates to the grey level value. In the local region, 

each pixel has interaction with other pixels, and the magnitude 

of the interaction is determined by the corresponding potential 

value. 

The spatial distribution or topological structure of a data field 

mainly depends on the influential range of interaction among 

data objects and is little affected by the form of potential 

function and the index k of distance term. In real applications, 

the Gaussian potential function (i.e., nuclear-like potential 

function with k =2) representing a short-range field is often 

adopt to model the distribution of data fields due to its good 

mathematic properties. According to 3σ law of Gaussian 

function, the influential range of object interaction is usually 

defined as 

 

 3 / 2R     (3) 

 

where  R = influential range of a data object 

 

When the distance is more than R, the power of this object is so 

weak that it can be neglected. 

In a data space with more than one data object, the potential 

value of any position under these circumstances can be obtained 

based on the following principle. Given a data field produced by 

a data set D = {x1,x2,⋯,xn} in space Ω ⊆ R^p, the potential at 

any point x ∈ Ω can be calculated as 
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where  φ(x) = potential value 

 ||x-xij|| = the distance between object x and point xij 

 ρij= the mass of object xij 

 

2.3 Comparison Between Geary’s C and Data Field 

Comparing the two methods above, we can see that they present 

almost in the same way in terms of the form of equations. The 

comparison can be seen in Table 1. 

 

Table 1 Comparison between Geary’s C and Data Field 
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Table 1 shows that both data field method and Geary’s C 

statistic describe the local spatial correlation between objects 

considering two parts—the attribution correlation and the 

spatial weights. ρij is to the data field method what (Xi-Xj)2 is to 

Geary’s C statistic. Although these two are calculated in 

different ways, they share the same goal of measuring the 

attribution correlation of objects. The same goes to comparison 

of the computation approach of the spatial weights. 

Above in all, as can be seen from the comparison of the 

equation of the data field method and Geary’s C statistic, they 

work in essentially the same way and can be concluded as 

 

,

( ( ) ( ))
x y

F w f x y     （5） 

 

where  F = value of spatial correlation in the local window 

 x, y = the number of two position in the local window 

 ρ(x),ρ(y) = the attribution correlation of two position 

 W = the spatial weights 

 

Furthermore, we enhance the original data field method by 

considering each pixel in the window as the central pixel to 

compute statistical characteristics between it and its 

neighbourhood pixels. Thus each pixel will have the same 

impact on the feature value of the window and the local spatial 

structure will be described and modelled more completely. 

Figure 1 shows different description ways of the original data 

field and the enhanced data field. 
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a) original data field            b) enhanced data field 

Figure 1 Figure different description ways of the original data 

field and the enhanced data field 

As Figure 1a) shows that the potential value at point x33 can be 

calculated as 
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       （6） 

 
When we use the enhanced data field method to describe the 

local spatial correlation, as Figure 1b) shows, the potential 

value at point x33 can be calculated as 
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The formula of the enhanced data field shows that we take the 

interaction among all the 24 neighbourhood pixels into account 

instead of direct nearby 8 pixels, when calculating the value of 

the central pixel X33. So it weakens the contribution of the 

central pixel to the whole window, which avoids presenting a 

one-side local spatial structure.  

Then, given a data field produced by a data set D = {x1,x2,⋯,xn} 

in space Ω ⊆ R^p, the potential at any point x∈Ω can be 

calculated as 
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where  φ(x) = potential value 

 ||x-xij || = the distance between object x and point xij 

 ρij= the mass of object xij 

 

 

3. COMBINATION OF GEARY’S C AND DATA FIELD 

An experiment is performed to show how the spatial statistical 

information obtained by the Geary’s C statistic and data field 

method respectively impact on the imagery classification. For 

the evaluation of the classification, we used the UC Merced 

Land Use Dataset which is shown in Figure 2. 

 

 
Figure 2 QuickBird image 

 

Figure 3 represents Geary’s C feature of figure 2. As we can see, 

boundaries are well extracted. In other words, Geary’s C does 

well in distinguishing different objects. However, there are still 

much patches and noise, which will lead to low accuracy. 

 
Figure 3 Geary’s C feature 

 

Figure 4 represents the data field feature of figure 3. It is 

obvious that data field method can filter and limit the noise 

effectively. 

 

 
Figure 4 Data field feature 

 

4. EXPERIMENT 

In order to validate the effectiveness of the proposed algorithm 

for texture feature representation and the classification of high-

spatial-resolution remotely sensed imagery, the proposed 

method was evaluated with QuickBird datasets of Wuhan City. 

Moreover, Gram-schmidt Pan Sharpening method, which is 

implemented in environment for visualizing images (ENVI) 

program, was used to merge high spatial resolution 

panchromatic images with high spectral resolution multispectral 

images to improve spectral quality of the test image. 

In addition, some other spatial information extraction methods, 

including local Moran’s I (L_I), local Geary’s C (L_C), local 

Getis (L_G) were employed for the purpose of performance 
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comparison. In addition, we employed the support vector 

machine (SVM) to realize the effective integration of spectral 

and spatial features.  

Since all the methods above have the influential range. 

Repeated experiments were performed with multiple window 

sizes to select the proper parameter for local spatial 

autocorrelation analysis. 

 

4.1 Data Set 

The test image, a three-band natural-color image, is shown in 

Figure 5, comprising 889 rows and 1039 columns with a spatial 

resolution of 0.61 m. As can be seen, the test image 1 contains 

many kinds of typical ground objects in urban areas (different 

types of buildings, water, grass, trees, roads, and shadow). The 

number of samples in the training set and test set for different 

objects is shown in table 2. Among the six kinds of land cover 

class, building and water cover most of the image. Thus, the 

training set and test set of building and water are selected more 

than other objects. 

 

 
Figure 5 Test image  

 

Table 2. Number of the training and test samples for the 

QuickBird image 

Class Training Set Test Set 

Building 6750 5990 

Water 70033 27708 

Tree 6283 2979 

Grass 1420 1374 

Road 1960 1785 

Shadow 3185 2408 

 

4.2 Classification Results 

Figure 6 shows classification results using four different feature 

extraction methods, spectral bands with L_I, spectral bands with 

L_G, spectral bands with L_C and spectral bands with the 

proposed method (D_C). The classification accuracies (overall 

accuracy and Kappa coefficient) achieved by different texture 

extraction algorithms with their optimal parameters are 

presented in Table 3. 

 

  
(a) (b) 

  
(c) (d) 

 

Building   Water       Tree        Grass       Road     Shadow 

Figure 6 SVM classification results of the test image with (a) 

L_I + spectral features, (b) L_G + spectral features, (c) L_C + 

spectral features and (d) D_C+ spectral features 

 

Table 3. The classification accuracies achieved by the different 

texture extraction algorithms with their optimal parameters 

Method 
Window 

size 

Overall

（%） 
Kappa 

L_I+ spectral 25*25 93.63 0.8809 

L_G+ spectral 15*15 95.00 0.9072 

L_ C+ spectral 15*15 95.00 0.9072 

D_C+ spectral 

Geary’s C: 

15*15, data 

field: 10*10 

95.98 0.9254 

NB：L_I：local Moran’s I，L_C：local Geary’s C，L_G：

local Getis， D_C：data field and local Geary’s C。 

 

From Table 2, we can draw the following conclusions: 

(1) The classification accuracy achieved by local Geary’s C is 

equal to local Getis and is a little higher than local Moran’s I. 

(2) Data field method can reduce small patches to improve the 

classification accuracy of local Geary’s C statistic. However the 

overall accuracy increases only by 0.98%.  

(3) Window size definitely affected classification accuracy. For 

the spatial correlation calculated using moving windows across 

the whole image, every method has its own optimal window 

size. 

 

5. CONCLUSIONS 

In this paper, the data field-based method is introduced to filter 

and reduce patches caused by Geary’s C statistic. Data field is 

generated inspired by the short-range nuclear force’s field in the 

physical world, and the potential value in the data field is as the 

measurement of the grey scale changes in the remotely sensed 

images. Compared with the relative methods, experimental 

results show that images can be classified effectively and 

efficiently by using the new technique.  

A possible future research direction is to study on the physical 

properties of the data field method like the superposition 

principle and extend its application to other domains.  
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