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ABSTRACT: 

 

Topic modeling has been an increasingly mature method to bridge the semantic gap between the low-level features and high-level 

semantic information. However, with more and more high spatial resolution (HSR) images to deal with, conventional probabilistic 

topic model (PTM) usually presents the images with a dense semantic representation. This consumes more time and requires more 

storage space. In addition, due to the complex spectral and spatial information, a combination of multiple complementary features is 

proved to be an effective strategy to improve the performance for HSR image scene classification. But it should be noticed that how 

the distinct features are fused to fully describe the challenging HSR images, which is a critical factor for scene classification. In this 

paper, a semantic-feature fusion fully sparse topic model (SFF-FSTM) is proposed for HSR imagery scene classification. In SFF-

FSTM, three heterogeneous features—the mean and standard deviation based spectral feature, wavelet based texture feature, and 

dense scale-invariant feature transform (SIFT) based structural feature are effectively fused at the latent semantic level. The 

combination of multiple semantic-feature fusion strategy and sparse based FSTM is able to provide adequate feature representations, 

and can achieve comparable performance with limited training samples. Experimental results on the UC Merced dataset and Google 

dataset of SIRI-WHU demonstrate that the proposed method can improve the performance of scene classification compared with 

other scene classification methods for HSR imagery. 
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1. INTRODUCTION       

The rapid development of earth observation and remote sensing 

techniques has led to large amount of high spatial resolution 

(HSR) images with abundant spatial and structural information. 

Some of the most popular approaches are the object-based and 

contextual-based methods which can achieve precise object 

recognition (Bellens et al., 2008; Rizvi and Mohan, 2011; Tilton 

et al., 2012). Nevertheless, the HSR scenes often contain 

diverse land-cover objects, such as road, lawn, and building. 

The same type of objects may vary in spectral or structural 

based low-level features. The different distribution of the same 

land-cover objects may obtain different type of semantic scenes. 

And the same type of scenes may consist of different types of 

simple objects. These methods which are based on the low-level 

features are unable to capture the complex semantic concepts of 

different scene images. This leads to the divergence between the 

low-level data and the high-level semantic information, namely 

the “semantic gap” (Bratasanu et al., 2011). It’s a big challenge 

to bridge the semantic gap for HSR imagery. Scene 

classification, which can automatically label an image from a 

set of semantic categories (Bosch et al., 2007), as an effective 

method has been receiving more and more attention (Yang and 

Newsam, 2010; Cheriyadat, 2014; Zhao et al., 2013; Zhao et al., 

2016b; Zhao et al., 2016c). Among the various scene 

classification methods, the bag-of-visual-words (BOVW) model 

has been successfully applied to capture the high-level 

semantics of HSR scenes without the recognition of objects in 

object-based scene classification methods (Zhao et al,. 2014). 

Based on the BOVW model, the probabilistic topic model (PTM) 

represents the scenes as a random mixture of visual words. The 

commonly used PTM, such as probabilistic latent semantic 

analysis (PLSA) (Hofmann, 2001) and latent Dirichlet 

allocation (LDA) (Blei et al., 2003) mine the latent topics from 

the scenes and have been employed to solve the challenges of 

HSR image scene classification (Bosch et al., 2008; Liénou et 

al., 2010; Văduva et al., 2013).  

 

To acquire latent semantics, the feature descriptors captured 

from HSR images are critical for PTM. In general, a single 

feature is employed and is inadequate (Zhong et al., 2015). 

Multi-feature based scene classification methods have also been 

proposed (Shao et al., 2013; Zheng et al., 2013; Tokarczyk et al., 

2015). Considering the distinct characteristics of the HSR 

images, the features should be carefully designed to capture the 

abundant spectral and complex structural information. In 

addition, the different features are usually fused before k-means 

clustering, thus acquiring one dictionary and one topic space for 

all the features. This leads to the mutual interference between 

different features (Zhong et al., 2015), and is unable to 

circumvent the inadequate clustering capacity of the hard-

assignment based k-means clustering, which is not efficient in 

the high-dimensional feature space. With the development of 

PTM for HSR scene classification, there are two issues should 

be considered. The first one is how to infer sparser latent 

representations of the HSR images. Another one is how to 

design more efficient inference algorithms for PTM. In order to 

achieve good performance for huge volume of HSR image 
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scenes, we may have to increase the number of topics to get 

more semantic information. However, for instance, the 

distribution of topic variables for the LDA model is drawn from 

a Dirichlet distribution with the parameter . The variable is 

greater than 0 no matter how the parameter  varies (Blei et al., 

2003). This leads to a dense topic representation of the HSR 

images, which is not sparse and requires more storage, and is 

time consuming. Another method is to impose sparsity 

constrains on the topic to change the object function of the 

model (Shashanka et al., 2007; Zhu and Xing, 2011). But we 

have to do model selection with the regularization terms based 

auxiliary parameters of these model, which is problematic when 

dealing with large amount of HSR image dataset. Fivefold cross 

validation is often performed to evaluate the experimental 

dataset to guarantee enough training samples for classification 

accuracy (Yang and Newsam, 2010; Cheriyadat, 2014). 

Reducing the number of training samples would be more 

practical. 

 

Inspired by the aforementioned work, we present a semantic-

feature fusion fully sparse topic model (SFF-FSTM) for HSR 

image scene classification. Fully sparse topic model (FSTM) 

proposed by Than and Ho (2012) for modeling large collections 

of documents is utilized to model HSR imagery for the 

following reason. Based on the similarity of documents and 

images, FSTM is able to remove the redundant information and 

infer sparse semantic representations with shorter inference time. 

In this way, to acquire sparse latent topics, we intended to use a 

limited number of images as training sample which is more in 

line with the practical application. To the best of our knowledge, 

no such PTM based scene classification method with limited 

training samples has been developed to date. However, FSTM is 

unable to fully exploit the information provided by the limited 

training samples with sparse representations. Hence in SFF-

FSTM, three complementary features are selected to describe 

HSR images. Dense scale-invariant feature transform (SIFT) 

feature is chosen as the structural feature, mean and standard 

deviation as the spectral feature, and wavelet feature as the 

texture feature. Based on the effective feature description for 

HSR imagery, a semantic-feature fusion strategy is designed to 

fuse the three features after semantic mining with three distinct 

topic spaces. This can provide fully mined semantic information 

of the HSR imagery from three complementary perspectives, 

with no mutual interference and clustering impact. The 

incorporation of support vector machine (SVM) with a 

histogram intersection kernel (HIK) is effective in increasing 

the discrimination of different scenes. The combination of 

multiple semantic-feature fusion strategy and sparse 

representation based FSTM is able to trade off sparsity and the 

quality of sparse inferred semantic information as well as 

inferring time, and presents a comparable performance with the 

existed relevant method. 

 

The rest of the paper is organized as follows. The next section 

details the procedure of the proposed SFF-FSTM for HSR 

image scene classification. A description of the experimental 

datasets and an analysis of the experimental results are 

presented in Section 3. Conclusions are discussed in the last 

section. 

 

2. SEMANTIC-FEATURE FUSION FULLY SPARSE 

TOPIC MODEL FOR HSR IMAGERY 

2.1 Probabilistic Topic model 

Based on “bag-of-words” assumption, the generative 

probabilistic model of PTM, including PLSA, LDA and FSTM, 

are applied to HSR images by utilizing a visual analog of a 

word, acquired by vector quantizing spectral, texture, and 

structural feature like region descriptors (Bosch et al., 2008). 

Each image can then be represented as a set of visual words 

from the visual dictionary. By introducing the latent topics 

characterized by a distribution over words, the PTM model the 

images as random mixtures over latent variable space.  

 

Among the various PTM, the PLSA model as the classical PTM 

is proposed by Hofmann (2001). It combines probability and 

statistics theory with the BOVW representation. By choose a 

latent topic 
kz with probability ( | )k ip z d   and a word jw  with 

probability ( )j kp w |z , the joint probability ( , )j ip w d  between 

visual words jw  and images 
id  can be decomposed as (1): 

1

( ) ( ) ( | )
K

j i j k k i
k

p w |d = p w |z p z d


  (1) 

 

The mixing weight ( | )k ip z d is the semantic information which 

PTM mined from the visual words of HSR images. It can be 

seen that PLSA lack a probability function to describe the 

images. This makes PLSA unable to assign probability to the 

images outside the training samples, and the number of model 

parameter grow linearly with the size of image dataset. 

 

Hence, in 2003, Blei proposed LDA, which introduces the 

Dirichlet distribution over the topic mixture  based on the 

PLSA model. The k-dimensional random variable  follows the 

Dirichlet distribution with the parameter , where k is assumed 

known and fixed first. The LDA model provides a probability 

function for the discrete latent topics in PLSA, which being a 

complete PTM. However, the Dirichlet variable is greater than 0 

when   varies. The latent representation of HSR imagery by 

LDA is often dense with the large amount of images to model, 

while requiring huge memory for storage. And the inference 

algorithm of the LDA model is complex and takes a lot of time. 

 

In 2012, Than and Ho proposed FSTM for modeling large 

collections of documents and applying to supervised dimension 

reduction. FSTM uses the Frank-Wolf algorithm of the sparse 

approximation algorithm as the inference algorithm, which 

follows the greedy approach, and has been proven to converge 

at a linear rate to the optimal solutions. In FSTM, the latent 

topic proportion  is a convex combination of the topic simplex 

with at most l+1vertices after l iterations, which follows an 

implicit constraint 0|| || 1L   . Hence, we choose FSTM with 

the sparse solutions to model the HSR imagery in this paper. 

 

2.2 Complementary feature description 

As can be seen from Fig. 1(a), it is difficult to distinguish 

parking lot from harbor, neither from the structural 

characteristics nor the textural ones. However, due to the 

spectral difference between ocean and road, the spectral 

characteristics play an important role. In Fig. 1(b), the storage 

tanks and dense residential scenes mainly differ in the structural 

characteristics. In addition, it can be seen from Fig. 1(c) that the 

forest and agriculture scenes are similar in spectral and 

structural characteristics, but they differ greatly in the textural 

information from the global perspective. Considering the 

abundant spectral characteristics and the complex spatial 

arrangement of HSR imagery, three complementary features are 

designed for the HSR imagery scene classification task. Before 
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feature descriptor extraction, the images are split into image 

patches using uniform grid sampling method. 

 

   
Parking lot Storage tanks Forest 

   
Harbor Dense residential Agriculture 

(a) (b) (c) 

Fig. 1. HSR images of the parking lot, harbor, storage tanks, 

dense residential, forest, and agriculture scene classes: (a) 

shows the importance of the spectral characteristics for HSR 

images; (b) shows the importance of the structural 

characteristics for HSR images; and (c) shows the importance of 

the textural characteristics for HSR images. 

 

2.2.1 Spectral feature: The spectral feature reflects the 

attributes that constitute the ground components and structures. 

The first-order statistics of the mean value and the second-order 

statistics of the standard deviation value of the image patches 

are calculated in each spectral channel as the spectral feature, 

According to (2) and (3), n is the total number of image pixels 

in the sampled patch, and i jv denotes the j-th band value of the 

i-th pixel in a patch. In this way, the mean (meanj) and standard 

deviation (stdj) of the spectral vector of the patch are then 

acquired. 

 

1

n

i
i

j

v

mean
n

  (2) 

2

1

( )
n

ij j
i

j

v mean

std
n






  (3) 

 

2.2.2 Texture feature: The texture feature contains 

information about the spatial distribution of tonal variations 

within a band (Haralick et al., 1973), which can give 

consideration to both the macroscopic properties and fine 

structure. Wavelet transforms enable the decomposition of the 

image into different frequency sub-bands, similar to the way the 

human visual system operates (Huang and Avivente, 2008). 

This makes it especially suitable for image classification and 

multilevel 2-D wavelet decomposition is utilized to capture the 

texture feature from the HSR images. And the level where the 

wavelet decomposition of the images at is optimally set to 3. 

 

2.2.3 Structural feature: The SIFT feature (Lowe, 2004) 

has been widely applied in image analysis since it can overcome 

the addition of noise, affine transformation, and changes in the 

illumination, as well as compensating for the deficiency of the 

spectral feature for HSR imagery. Each image patch is split into 

4 4 neighbourhood regions and each directions for each 

gradient orientation histogram are counted in each region. 

Hence, the gray dense SIFT descriptor with 128 dimensions is 

extracted as the structural feature. This was inspired by previous 

work, in which dense features performed better for scene 

classification (Li and Perona, 2006), and Lowe (2004) suggest 

that using a 4 4 8 128=  dimensions vector to describe the 

keypoint descriptor is optimal. 

 

2.3 Multiple Semantic-feature Fusion Fully Sparse Topic 

Model for HSR Imagery with Limited Training Samples 

The previous studies have shown that a uniform grid sampling 

method can be more effective than other sampling methods such 

as random sampling (Li and Perona, 2006). In this way, the 

image patches acquired by uniformly sampling the HSR images 

are digitized by spectral, texture and SIFT features, and three 

types of feature descriptors, D1, D2, and D3 are obtained. 

However, with the influence of illumination, rotation, and scale 

variation, the same visual word in different images may be 

endowed with various feature values. The k-means clustering is 

applied to quantize the feature descriptors to generate 1-D 

frequency histogram, and image patches with similar feature 

values can correspond to the same visual word. By the statistical 

analysis of the frequency for each visual word, we can obtain 

the corresponding visual dictionary.  

 

The conventional methods usually directly concatenate three 

types of feature descriptors to make up a long 

feature  1 1 2 3F D ,D ,D . The long vector is then quantized by 

k-mean clustering to generate a 1-D histogram for all the 

features. As the features interfere with each other when 

clustering, the 1-D histogram is unable to fully describe the 

HSR imagery. In SFF-FSTM, the spectral, texture, and SIFT 

features are quantized separately by k-mean clustering 

algorithm to acquire three distinct 1-D histograms, H1, H2, and 

H3. By introducing probability theory, each element of the 1-D 

histogram for SFF-FSTM are transformed into the word 

occurrence probability. To mine the most discriminative 

semantic feature, which is also the core idea of PTM, the three 

histograms are separately mined by SFF-FSTM to generate 

three distinct latent topic spaces. This is different from the 

conventional strategies which fuse the three histograms before 

topic modeling, and only one latent topic space is obtained 

which is inadequate.  

 

Specifically, SFF-FSTM chooses a k-dimensional latent 

variable  . Given an image M and K 

topics
1( ,..., )K   , the log likelihood of M is defined 

in (4), where
MI is the set of term indices of image M, 

and jM is the frequency of term j in M. Hence, the inference 

task is to search for  to maximize the likelihood of M. we can 

obtain (5) to set
1

K

j k kjk
x  


 and

t( ,..., )1 Vx x x , where V 

is the visual dictionary of V terms. Different from other topic 

models, SFF-FSTM do not infer  directly, whereas 

reformulate the inference task of optimization over  as a 

concave maximization problem over the simplex 

( ,..., )1 Kconv    of topic. It can be seen that x is a convex 
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combination of the K topics with the fact in (6), and by finding 

x that maximizes the objective function (5), we can infer 

the latent topic proportion of the image M.  

 

Hence, suppose there are N images, then for each of H1, H2, and 

H3, K1, K2, and K3 topics are assumed to compose the images, 

respectively. The latent semantics of H1, H2, and H3, denoted 

as
1 ,

2 , and
3 , respectively , are inferred with the Frank-

Wolf algorithm. Then the semantic features
1 ,

2 , and
3 of 

all the HSR images are fused at the semantic level, thus 

obtaining the final multiple semantic-feature  
TT T T

2 1 2 3, ,F    , 

with a sparse size. Finally, the F2 with the optimal 

discriminative characteristics is classified by SVM classifiers 

with a HIK to predict the scene label. The HIK measures the 

degree of similarity between two histograms, to deal with the 

scale changes, and has been applied to image classification 

using color histogram features (Barla et al., 2003). We 

let 1 2= ( , ,...,v )MV v v be the LGFBOVW representation 

vectors of M images, and the HIK is calculated according to (7). 

In this way, SFF-FSTM provides a complementary feature 

description, an effective image representation strategy, and an 

adequate topic modeling procedure for HSR image scene 

classification, with even limited training samples, which will be 

tested in the Experimental Section. Scene classification based 

on SFF-FSTM is shown in Fig.2. 

 

1
log ( ) log

M

K

j k kjj I k
P M M  

 
   (4) 

log ( ) log
M

j j
j I

P M M x


   
(5) 

1kk
  , 0k   (6) 

( , ) min(v ,v )i j i,k j,k
k

K v v  
(7) 
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Figure 2. The proposed HSR scene classification based on the SFF-FSTM. 

 

3. EXPERIMENTS AND ANALYSIS 

 

3.1 Experimental Design 

The commonly used 21-class UC Merced Dataset and a 12-class 

Google dataset of SIRI-WHU were evaluated to test the 

performance of SFF-FSTM. In the experiments, the images 

were uniformly sampled with a patch size and spacing of 8 and 

4 pixels, respectively. To test the stability of the proposed 

LGFBOVW, the different methods were executed 100 times by 

a random selection of training samples, to obtain convincing 

results for the two datasets. A k-means clustering with the 

Euclidean distance measurement of the image patches from the 

training set was employed to construct the visual dictionary, 

which was the set of V visual words. K topics were selected for 

FSTM. The visual word number V and topic number K were the 

two free parameters in our method. Taking the computational 

complexity and the classification accuracy into consideration, V 

and K were optimally set as in Table 1 and Table 3 for the 

different feature strategies with the two dataset. In Table 1, 2, 3, 

and 4, SPECTRAL, TEXTURE, and SIFT denote scene 

classification utilizing the mean and standard deviation based 

spectral, wavelet-based texture, SIFT-based structural features, 

respectively. The proposed method that fuse the multiple 

semantic features at the latent topic level is referred to as the 

SFF strategy.  

 

To further evaluate the performance of SFF-FSTM, the 

experimental results utilizing SPM (Lazebnik et al., 2006), 

PLSA (Bosch et al., 2008), LDA (Liénou et al., 2010) and the 

experimental results on the UC Merced dataset, as published in 

the latest papers by Yang and Newsam (2010), Cheriyadat 

(2014), Chen and Tian (2015), Mekhalfi et al. (2015), and Zhao 

et al. (2016a) are shown for comparison. SPM employed dense 

gray SIFT, and the spatial pyramid layer was optimally selected 

as one. In addition, the experimental results on the Google 

dataset of SIRI-WHU utilizing SPM (Lazebnik et al., 2006), 

PLSA (Bosch et al., 2008), LDA (Liénou et al., 2010) and the 

experimental results on the Google dataset of SIRI-WHU, as 

published in the latest paper by Zhao et al. (2016a) are also 

shown for comparison. 

 

3.2 Experiment 1: The UC Merced Image Dataset 

The UC Merced dataset was downloaded from the USGS 

National Map Urban Area Imagery collection (Yang and 

Newsam, 2010). This dataset consists of 21 land-use scenes (Fig. 

3), namely agricultural, airplane, baseball diamond, beach, 

buildings, chaparral, dense residential, forest, freeway, golf 

course, harbor, intersection, medium residential, mobile home 

park, overpass, parking lot, river, runway, sparse residential, 

storage tanks, and tennis courts. Each class contains 100 images, 

measuring 256 256 pixels, with a 1-ft spatial resolution. 

Following the experimental setup as published in Yang et al. 

(2010), 80 samples were randomly selected per class from the 

UC Merced dataset for training, and the rest were kept for 

testing. 
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Figure 3. UC Merced dataset. (a)–(u): agricultural, airplane, 

baseball diamond, beach, buildings, chaparral, dense residential, 

forest, freeway, golf course, harbor, intersection, medium 

residential, mobile home park, overpass, parking lot, river, 

runway, sparse residential, storage tanks, and tennis courts. 

 

The classification performance of different strategies based on 

the FSTM and the comparison with the experimental results of 

previous methods for the UC Merced dataset are reported in 

Table 2. As can be seen from Table 2, the classification results 

of the single feature based FSTM is unsatisfactory. The 

classification result, 94.55%±1.02% for the proposed SFF-

FSTM is best among the different methods, and improves a lot 

compared with the single feature strategy. This indicates that the 

combination of multiple semantic-feature fusion strategy and 

sparse representation based FSTM is able to trade off sparsity 

and the quality of sparse inferred semantic information as well 

as inferring time. In addition, it can be seen that SFF-FSTM is 

superior to the performance of SPM (Lazebnik et al., 2006), 

PLSA (Bosch et al., 2008), LDA (Liénou et al., 2010), the Yang 

and Newsam method (2010), the Cheriyadat method (2014), the 

Chen and Tian method (2015), the Mekhalfi et al. method 

(2015), and the Zhao et al. method (2016a). 

 

 SPECTRAL TEXTURE SIFT SFF 

V 1000 800 1000 2800 

K 240 300 280 820 

Table 1. Optimal V and K values for the different feature 

strategies with the UC Merced dataset 

 

 SPECTRAL TEXTURE SIFT 

FSTM 78.33±1.42 75.00±1.63 
82.38

±1.58 

SPM 82.30±1.48 

PLSA  89.51±1.31 

LDA  81.92±1.12 

Cheriyadat (2014) 81.67±1.23 

Yang and Newsam 

(2010) 
81.19 

Chen and Tian (2015) 89.10 

Mekhalfi et al. (2015)  94.33 

Zhao et al. (2016a) 92.92±1.23 

SFF-FSTM 94.55±1.02 

Table 2. Classification accuracies (%) of different strategies 

based on the FSTM and comparison with the experimental 

results of previous methods for the UC Merced dataset 

 

3.3 Experiment 2: The Google Dataset of SIRI-WHU 

The Google dataset was acquired from Google Earth (Google 

Inc.), covering urban areas in China, and the dataset is designed 

by Intelligent Data Extraction and Analysis of Remote Sensing 

(RS_IDEA) Group in Wuhan University (SIRI-WHU) (2016a). 

It consists of 12 land-use classes, which are labelled as follows: 

meadow, pond, harbor, industrial, park, river, residential, 

overpass, agriculture, water, commercial, and idle land, as 

shown in Fig. 4. Each class separately contains 200 images, 

which were cropped to 200×200 pixels, with a spatial resolution 

of 2 m. In this experiment, 100 training samples were randomly 

selected per class from the Google dataset, and the remaining 

samples were retained for testing. 

 

Figure. 4. Google dataset of SIRI-WHU. (a)–(l): meadow, pond, 

harbor, industrial, park, river, residential, overpass, agriculture, 

water, commercial, and idle land. 

 

The classification performance of different strategies based on 

the FSTM and comparison with the experimental results of 

previous methods for the Google dataset of SIRI-WHU are 

reported in Table 4. As can be seen from Table 4, the 

classification results, 97.83%±0.93%, for the proposed SFF-

FTSM, is much better than the spectral, texture, SIFT based 

FSTM method, which confirms the framework incorporating 

multiple semantic-feature fusion and FSTM is a comparative 

approach for HSR image scene classification. In Table 4, 

compared to the other methods, SPM,  the LDA method 

proposed by Lienou et al. (2010), the PLSA method proposed 

by Bosch et al. (2008), and the experimental results published 

by Zhao et al. (2016a), the highest accuracy is required by the 

proposed SFF-FSTM, which presents a comparable 

performance with the existed relevant method. 

 

 SPECTRAL TEXTURE SIFT SFF 

V 1000 800 1000 2800 

K 240 300 280 820 

Table 3. Optimal V and K values for the different feature 

strategies with the Google dataset of SIRI-WHU 

 

 SPECTRAL TEXTURE SIFT 

FSTM 83.33±1.06 80.92±0.95 78.50±1.12 

SPM 77.69±1.01 

PLSA 89.60±0.89 

LDA 60.32±1.20 

Zhao et al. 

(2016a) 
91.52±0.64 

SFF-FSTM 97.83±0.93 

Table 4. Classification accuracies (%) of different strategies 

based on the FSTM and comparison with the experimental 

results of previous methods for the Google dataset of SIRI-

WHU 

 

3.4 Experiment 3: Multiple Semantic-feature Fusion Fully 

Sparse Topic Model for HSR Imagery with Limited 

Training Samples 

By modeling the large collection of images with only a few 

latent topic proportions of non-zero values, we intend to deal 

with the HSR imagery with limited training samples employing 

SFF-FSTM and SAL-LDA (Zhong et al., 2015), respectively. 

The training number was varied over the range of [80, 60, 40, 
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20, 10, 5] for the UC Merced dataset. And the training number 

for the Google dataset of SIRI-WHU was varied over the range 

of [100, 80, 60, 40, 20, 10]. The classification accuracy with 

different numbers of the training samples for the UC Merced 

dataset and the Google dataset of SIRI-WHU are reported in 

Table 5 and Table 6. The corresponding curves are shown in Fig. 

5. 

As can be seen from Table 5, Table 6 and Fig.5, the proposed 

SFF-FSTM performs better, and is relatively stable with the 

decrease in the number of training samples per class for the two 

datasets, when compared to SAL-LDA. When the training 

samples is under 20%, even 10% or 5%, SFF-FSTM display a 

smaller fluctuation than SAL-LDA, and can keep a comparative 

satisfactory and robust performance with limited training 

samples. 

 

We also test and compare the inference efficiency of the 

proposed SFF-FSTM and SAL-LDA with the spectral feature 

for the two datasets. The inference time of SFF-FSTM is about 

3 minutes, whereas SAL-LDA takes almost 40 minutes to infer 

the spectral based latent semantics. This indicates SFF-FSTM is 

an efficient PTM compared with the classical non-sparse PTM 

such as SAL-LDA. 

 

 

Number of training 

samples 

Accuracy (%) 

SFF-FSTM SAL-LDA 

80 94.55±1.02 88.33±1.82 

60 93.10±1.42 87.00±1.17 

40 89.76±1.09 84.35±1.46 

20 82.92±1.42 77.23±1.62 

10 78.23±1.28 71.46±1.58 

5 75.65±1.56 66.29±2.09 

Table 5. Performance of SFF-FSTM and SAL-LDA for the UC 

Merced dataset with limited training samples 

 

Number of training 

samples 

Accuracy (%) 

SFF-FSTM SAL-LDA 

100 97.83±0.93 90.65±1.05 

80 96.52±0.77 89.23±0.99 

60 95.65±0.82 86.62±1.02 

40 94.17±0.89 82.69±0.96 

20 89.07±1.04 76.29±1.21 

10 86.26±1.13 71.06±1.45 

Table 6. Performance of SFF-FSTM and SAL-LDA for the 

Google dataset of SIRI-WHU with limited training samples 
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    (b) 

Figure. 5. Classification accuracies with different numbers of 

training samples per class. (a) UC Merced dataset. (b) Google 

dataset of SIRI-WHU 

 

4. CONCLUSION 

In this paper, we have designed an effective and efficient 

approach—the semantic-feature fusion fully sparse topic model 

(SFF-FSTM)—for HSR imagery scene classification. The fully 

sparse topic model (FSTM) has been used for unsupervised 

dimension reduction of the large collection of documents first. 

By combining the novel use of FSTM and the semantic fusion 

of three distinctive features for HSR image scene classification, 

SFF-FSTM is able to presents a robust feature description for 

HSR imagery, and achieve comparative performance with 

limited training samples. The proposed SFF-FSTM can improve 

the performance of scene classification compared with other 

scene classification methods with the challenging UC Merced 

dataset and Google dataset of SIRI-WHU. 

 

Nevertheless, image patches obtained by the uniform grid 

method might be unable to preserve the semantic information of 

a complete scene. It would therefore be desirable to combine 

image segmentation with scene classification. The clustering 

strategy, as one of the most important techniques in remote 

sensing image processing, is another point that should be 

considered. In our future work, we plan to consider topic 

models which can take the correlation between image pairs into 

consideration. 
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