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Fraunhofer IOSB, Department Video Exploitation Systems (VID)
76131 Karlsruhe, Germany, Fraunhoferstrasse 1

(guenter.saur, wolfgang.krueger)@iosb.fraunhofer.de

Commission VII, WG VII/5

KEY WORDS: change detection, image differencing, directed change mask, video mosaicking, image registration, UAV.

ABSTRACT:

Change detection is an important task when using unmanned aerial vehicles (UAV) for video surveillance. We address changes of
short time scale using observations in time distances of a few hours. Each observation (previous and current) is a short video sequence
acquired by UAV in near-Nadir view. Relevant changes are, e.g., recently parked or moved vehicles. Examples for non-relevant changes
are parallaxes caused by 3D structures of the scene, shadow and illumination changes, and compression or transmission artifacts. In
this paper we present (1) a new feature based approach to change detection, (2) a combination with extended image differencing (Saur
et al., 2014), and (3) the application to video sequences using temporal filtering. In the feature based approach, information about local
image features, e.g., corners, is extracted in both images. The label “new object” is generated at image points, where features occur in
the current image and no or weaker features are present in the previous image. The label “vanished object” corresponds to missing or
weaker features in the current image and present features in the previous image. This leads to two “directed” change masks and differs
from image differencing where only one “undirected” change mask is extracted which combines both label types to the single label
“changed object”. The combination of both algorithms is performed by merging the change masks of both approaches. A color mask
showing the different contributions is used for visual inspection by a human image interpreter.

1. INTRODUCTION

There has been an increased use of unmanned aerial vehicles
(UAV) during the last years. In particular for video reconnais-
sance and surveillance, UAVs have been proven to be a flexible
and useful platform. An important application in this context is
change detection in UAV video data. Here we address short-term
change detection, in which the time between observations ranges
from several minutes to a few hours. We distinguish this task
from video motion detection (shorter time scale) and from long-
term change detection based on time series of still images taken
between several days, weeks, or even years. Examples for rel-
evant changes we are looking for are recently parked or moved
vehicles. We addressed this task already in (Saur and Krüger,
2012) and in (Saur et al., 2014).

One challenge using small UAVs lies in the instable flight be-
havior and using low-weight cameras. Thus, there is a need to
stabilize and register the videos by image processing methods
since using only direct methods based on positional information
coming from a global positioning system (GPS) and attitude and
acceleration measured by an inertial measurement unit (IMU)
are not accurate enough. As a pre-requisite for change detec-
tion, a precise image-to-image registration is needed. Images are
selected on the basis of the sensor’s footprint and with respect
to a certain minimum overlap. The automatic image-based fine-
registration adjusts the images to a common geometry by using a
robust matching approach to cope with outliers.

The change detection algorithm has to distinguish between rel-
evant and non-relevant changes. Examples for non-relevant
changes are stereo disparity at 3D structures of the scene and
compression or transmission artifacts. Other influences to be sup-
pressed come from illumination and reflection changes. Even for
short-term scene-revisiting the illumination may have changed

due to the progression of sun elevation or changes of cloud cover-
ing. In combination with changed sensor positions there will be
changes in the shading of the object surface and contour lines as
well as changes of shape and size of the object shadows.

A systematic survey of change detection algorithms is given by
(Radke et al., 2005) and (Lu et al., 2004). The majority of the
algorithms can be classified into the main categories algebra,
transformation, and classification. In addition, there are special-
ized methods for remote sensing applications such as land-cover
and vegetation monitoring. The category algebra includes im-
age differencing, image ratioing, regression analysis, and statisti-
cal hypothesis testing for pixel values. Transformation methods
are often applied to multi- and hyperspectral images. The aim
is to reduce the redundancy between the available images chan-
nels and to find a combination of channels which enhance the
relevant changes. A well-known transformation method is prin-
cipal component analysis (PCA). Classification-based methods
need to find or have available application-specific class labels for
image regions. Change information can be extracted by compar-
ing the different label images, but the quality of change detec-
tion results depends strongly on the performance of the classifier,
which in turn depends on quality and quantity of the available
training data.

In the following section we present the workflow for video
change detection including image selection and registration. In
the section dedicated to the algorithms we revisit the extended
image differencing (Saur et al., 2014) and introduce the new fea-
ture based method. We describe a method for combining the two
approaches and we discuss the results of its application to single
image pairs. Thereafter we extend the application to video image
sequences by using video mosaics and by temporal filtering the
results coming from the single frame pairs. Finally we draw some
conclusions and the paper ends with an outlook to future work.
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2. WORKFLOW OF VIDEO CHANGE DETECTION

Areas to be surveyed by UAVs are, e.g., bridges, access points
to enclosed areas, or traffic lanes. By repeated overflights, such
an area can be observed with respect to changes of, e.g., recently
parked vehicles. For our example scene access point, Figure 1
shows video mosaics of two overflights using a linear flight path
and Nadir viewing geometry.

Figure 1: Video mosaics of the example scene access point: Pre-
vious overflight with selected frame (blue, left) corresponding to
the new frame (red, right) in the current overflight. 2nd row: Cur-
rent frame (right) aligned to the previous frame (left).

We propose the surveillance task to be solved by using a work-
flow consisting of the following steps:

Previous flight mission: Initially, a UAV mission is performed
and a video mosaic is created covering the scene area to be
surveilled. This video mosaic is geo-coded und serves as refer-
ence for the following steps. It is shown in Figure 1 as darkened
background both on the left and on the right of the 1st row.

Current flight mission: For the current point in time, another
UAV mission is performed by acquiring the video imagery in the
same manner as in the previous mission, i.e. by visiting the same
way points and by using the same Nadir viewing geometry.

Video frame selection: For each new video frame of the current
flight mission, a corresponding video frame of the previous flight
is selected due to a maximum overlap of the imaged scene in both
frames. By this, a sequence of image pairs is created consisting
of the frames of the current overflight together with each selected
frame from the previous overflight.

Frame alignment: For each video frame pair, an automatic
image-to-image registration is performed using a robust match-
ing approach. By the estimated homography, the current frame is
aligned to the previous frame (Fig. 1, 2nd row).

Change detection between single images: The aligned image
pair is the input for the change detection algorithms described in

section 3. The resulting change mask is an attribute image given
in the same pixel raster as the aligned input image pair.

Co-locating the change masks: The frames of the previous
flight are attached to the geo-coded reference video mosaic by
using the transformations from the mosaicking process (1st step).
The frame alignment (4th step) delivers an attachment of each
current frame and of each change mask to the reference mosaic.
These attachments align the frames to the mosaic in the 1st row
of Figure 1, where each previous and each current frame is subse-
quently overlaid on the reference mosaic (darkened background).
By this, the reference mosaic is updated to become an aligned
“current” video mosaic.

Temporal change mask filtering: During the current flight, the
frame pairs and the co-located change masks are sweeping over
the reference video mosaic. Each pixel is visited for several times
and the occurrences of change attribute values are accumulated
and filtered. This procedere is described in section 4.

The final result is an overall change mask aligned to the reference
video mosaic. Further exploitation can for example be performed
by a human image interpreter using a suitable visualization of the
detected changes.

3. ALGORITHMS FOR DETECTING CHANGES

Change detection methods are based on the comparison of two
aligned images. Initially, we discuss the main challenges when
suppressing image changes which come from image and scene
changes considered not to be relevant for the specific task.

Radiometric changes due to illumination and reflection: Due
to different day time or changed atmospheric conditions, object
surfaces, shadows, and background can differ substantially in the
images. Appropriate measures to suppress these effects consist
in applying suitable pre-processing steps and in using methods
which are invariant or less sensitive to offset and scaling of image
intensity and contrast.

Geometric distortions and displacements: Objects of the scene
are displaced due to 3D parallax caused by different positions of
the sensor at the time of image acquisition. The displacements
are usually not larger than only a few pixels and they are mixed
with other effects such as lens distortion or compression artifacts.
Therefore, the displacements are difficult to be used for struc-
ture from motion algorithms. They are considered as noise and
have to be suppressed by appropriate algorithms, e.g., by using
a neighborhood for searching pixels with minimum absolute dif-
ferences. This approach is based on a non-symmetrical distance
measure which is common in the context of document analysis
(Gesù and Starovoitov, 1999) and (Baudrier et al., 2008). Appli-
cation to background subtraction is used in (Pollard and Antone,
2012) while (Saur and Krüger, 2012) and (Saur et al., 2014) are
applying it for detecting changes in video image pairs.

Noise and artifacts: Contributions come from intensity noise
and compression artifacts but also from other effects, that are con-
sidered as noise, e.g., small changes such as shadows and occlu-
sions, or the above mentioned effects of illumination changes and
local displacements. Noise handling is an important step since
image differencing is decreasing the signal-to-noise ratio. Meth-
ods to suppress noise may consist for example of spatial filtering
and also of temporal filtering when using video sequences since
the same changes can be observed in many video image pairs (see
section 4).
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Figure 2: Change detection examples (1st-4th row): Previous image (1st column), current image (2nd column), masks of feature based
approach (3rd), extended image differences using a 7×7 neighborhood (4th), differencing mask (5th), and combined mask over current
gray image (6th column). 1st row: Constant gray image and synthetic test image containing rectangles and squares of width 1, 2, 4, 6,
and 8 pixels. 2nd row: Two copies of the test image with added noise and left-shifted by 8 pixels. 3rd and 4th row: subframes of aligned
video frames. The colors red and blue in the 3rd, 4th and 6th column correspond to structures present in the current and previous image
and indicate new or vanished objects. Magenta in the 4th and green in the 5th and 6th column denote changed object areas.

3.1 Extended image differencing

We now revisit the approach of extended image differencing from
(Saur et al., 2014). Denoting by I1 = I1(x) and I2 = I2(x) with
pixels x = (x, y) the equal-sized gray scale images of the scene,
the image D = D(x) of the absolute differences is derived by
pixelwise differencing

D(x) = |I1(x)− I2(x)|. (1)

To reduce the effects of changing illumination and shading, a lo-
cal adaption of the intensities is performed by adding the low pass
filtered difference image to I1 and replacing I1 by Î1 with

Î1 = I1 + (I2 − I1) = I1 + (I2 − I1). (2)

Extended image differencing is based on a minimum search in a
local neighborhood window N . Depending on in which image
the neighborhood search is applied, we get the difference images

DI1(x) = min
∆x∈N

|I1(x)− I2(x+∆x)|, (3)

DI2(x) = min
∆x∈N

|I2(x)− I1(x+∆x)|. (4)

Since the search result is not symmetric w.r.t. to I1 and I2, i.e.
DI1(x) ̸= DI2(x), we introduce DI(x) which is symmetric:

DI(x) = max(DI1(x), DI2(x)) (5)

Finally the change mask MI(x) is derived from DI(x) using an
adaptive threshold to eliminate thin structures.

Figure 2 shows four examples where each previous image I2 is
placed in the 1th column and each current image I1 in the 2nd.

Using a 7 × 7 neighborhood for N , the resulting DI1 (red) and

DI2 (blue) are shown in the 4th and the change mask MI (green)
in the 5th column. Applied to a synthetic test image and constant
gray image (1st row), we see, that the neighborhood search pre-
serves the small structures of even 1 and 2 pixels width. In the
mask image MI , the 1-pixel structures are eliminated.

In the 2nd example two copies of the test image are shifted to each
other and noise is added. Using a 7 × 7 neighborhood, all shifts
lower than 4 pixels are suppressed by construction and DI1, DI2

and MI are constant black. Due to thresholding, MI remains
black for shifts up to 6 pixels. We show here an example with a
shift of 8 pixels (2nd row). The shifts on both sides of the boxes
are detected, I1 on the left (red) and I2 on the right (blue). In MI

the 2-pixel structures are eliminated.

In the examples with real sensor images (3rd and 4th row), I1 and
I2 indicate the vehicles including their shadow by magenta (red
and blue) and smaller objects (persons and two-wheelers with
shadows) are indicated distinct in red or blue. In MI , the smaller
and lighter ones are filtered out.

3.2 Feature-based approach

A new feature-based change detection method for image pairs is
introduced to complement change detection by extended image
differences. The idea is to find changes by comparing suitable
local image features between the two input images. The method
computes two directed binary change masks C12 and C21. Mask
C12 marks locations, where salient image structure is present in
the first image, but is missing in the second image. Mask C21

reverses the role of the two images, i.e. it indicates image struc-
ture in the second image which is missing in the first image. In
a semi-automatic change detection system, the human photo in-
terpreter will use these masks as hints to objects (e.g. parked ve-
hicles) which are present in only one of the two images to be
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compared. Although the two change masks can be combined into
a single undirected change mask, keeping them separately has the
advantage of preserving the type of change hinted at.

The first step of the proposed change detection method is to com-
pute feature strength maps F1(x) and F2(x) for the two input
images I1(x) and I2(x). The method then uses two thresholds,
t0 and tr , to compute the directed change masks C12 and C21:

C12(x) = (F1(x) > t0 ∧ F1(x) > trF2(x)) (6)
C21(x) = (F2(x) > t0 ∧ F2(x) > trF1(x)). (7)

Threshold t0 is an absolute threshold used to detect presence of
sufficiently strong local features. Threshold tr is a relative thresh-
old which is used to compare the relative feature strength between
the two images.

Our measure of feature strength is based on the second-moment
matrix of the image gradient (Ix, Iy)T , also called structure ten-
sor (Jähne, 1993). Denoting the mean value of an image function
G in a local window centered on position x by G(x), the 2 × 2
second-moment matrix M(x) is given by

M(x) =

(
Ix(x)Ix(x) Ix(x)Iy(x)

Ix(x)Iy(x) Iy(x)Iy(x)

)
. (8)

The eigenvalues λ1 and λ2 of M(x) distinguish three classes
of local image structure at x: corner (λ1 > 0, λ2 > 0), edge
(λ1 > 0, λ2 = 0), and homogeneous patch (λ1 = 0, λ2 = 0).
Corner detection (Förstner and Gülch, 1987), (Shi and Tomasi,
1994) is often based on the second-moment matrix of the image
gradient. Here, we use the determinant of the second-moment
matrix to compute the feature strength for image I at position x:

F (x) = Ix(x)Ix(x) Iy(x)Iy(x)− Ix(x)Iy(x) Ix(x)Iy(x).

This definition of feature strength emphasizes corners and has
shown to provide good experimental results for the type of objects
(small vehicles, persons) we are interested in.

Optionally, morphological opening with a small rectangular
structuring element is used as a post-processing step to remove
small isolated regions from the change masks.

Both directed change masks of the feature based approach are
shown in the 3rd column of Figure 2 using red color for C12 and
blue for C21. Only the corners of the boxes are indicated since
inside the objects and at straight border edge lines the feature
strength is low. In the 1st and 2nd row, the 1- and 2-pixel ob-
jects are suppressed. Using a shift of 8 pixels, new and vanished
corners are indicated, while shifts of up to 6 pixels yield black im-
ages for C12 and C21. In the real images, all changed vehicles are
marked and merged with their shadow. The bus is indicated by
two separate blobs. Some smaller changes are indicated as well
and distinctly separated into new and vanished objects. Mixed
attributes (magenta) do not occur per construction.

3.3 Combining the results of both approaches

One obvious method to combine the approaches consists in merg-
ing the change masks. In the last column of Figure 2, the current
gray image is overlaid by the green extended image differences
MI and thereafter overlaid by the red C12 and blue C21 coming
from the feature based approach. Both results are comparable
with respect to the sensitivity to object size and object shift.

We now can observe the following effects:

Indicating the changes: In all examples, both approaches in-
dicate the large and salient changes. The sensitivity to smaller
changes is different for both depending on their feature strength
and their intensity difference compared to the background.

Indicating the object shape: The feature based approach indi-
cates the corners of an object while the green extended image
differencing mask fills out its interior. Both together mark the
complete obejct shape including its shadow.

Directed change mask: The feature based approach distinctly
discriminates between new and vanished objects, while the sep-
aration by extended image differencing is less clear (DI1 and
DI2). Therefore the green MI is suitable for undirected changes.

We suggest the following rules for combining the approaches:

1. Green and red blobs having a certain overlap are aggregated
and the color red is assigned to the aggregations,

2. Overlapping green and blue blobs are aggregated in the
same way and the color blue is assigned,

3. Overlapping aggregates are merged and get their common
color or green otherwise,

4. Isolated small blobs are suppressed.

The colors are assigned to the change attributes with red for “new
object” and blue for “vanished object”, while green indicates
undirected changes and is associated with “changed object area”.

For analyzing and comparing the results of both approaches how-
ever it is more convenient to visualize them without aggrega-
tion and suppression. In Figures 3 and 4 the results have the
same color coding and are produced with the same parameters
as those in Figure 2, 6th column. Figure 3 shows three exam-
ples using subframes of aligned UAV video images (1st and 2nd
row) and from a fixed sensor position using oblique view (3rd
row). All changed vehicles and smaller objects are assigned as
expected from the input. The images of the harbor scene (3rd
row) are taken at different daylight time and the blobs mark addi-
tional spotlights and areas with changed surface and illumination
(street, water).

4. APPLICATION TO VIDEO IMAGE SEQUENCES

An obvious approach to video change detection consists in adopt-
ing remote sensing methods to video exploitation: From repeated
overflights over the scene, geo-coded video mosaics are created,
to which single image pair change detection is applied. Using
video mosaics has the advantage that they represent compact im-
age coverings of the scene and that few mosaics are easier to han-
dle than hundreds of video frames. This is an important aspect
for a semi-automatic workflow, where human image interpreters
are involved.

On the other hand, video mosaics are composed of many slim
strips coming from different video frames acquired at different
points in time and from different sensor positions with differ-
ent attitudes. This causes artifacts at non-stationary scenes, e.g.,
moving cars get a longer or shorter image representation depend-
ing on whether they are moving in the same or in the opposite
direction compared to the sensor footprint’s movement. Since the
viewing geometry differs from slice to slice, the 3D structures of
the scene get mapped differently and therefore cause additional
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Figure 3: Change detection results for urban scenes in Nadir view from UAV (1st and 2nd row) and from a fixed sensor position in
oblique view at different daylight time (3rd row): Subframes of registered originals (1st and 2nd column) and combined change masks
(3rd column) over input gray image using the same color coding as in Figure 2.

distortions in the mosaic. Finally, these distortions may increase
during the mosaicking process due to error propagation.

In order to cope with small distortions, (Saur et al., 2014) intro-
duced an approach using an elastic transformation based on thin
splines for aligning the video mosaics.

For sustainably eliminating larger distortions due to 3D effects,
these errors must be suppressed already during the mosaicking
process. A common approach consists in modelling the mapping
and the 3D structure of the scene and thus creating so called true
ortho-images from the video frames and stitching them together
to get true ortho-mosaics. Comparing the true ortho-mosaics of
the previous and of the current flight, the 3D problems have been
eliminated in the case that the additionally needed 3D models
are accurate enough. This approach however is very complex,
especially when trying to perform the change detection in real
time during the video acquisition of the current flight. And the
problems with moving objects are still remaining.

In this paper however, we suggest an approach based on the
video mosaic of the previous flight and on subsequently applying
change detection to single video frame pairs within the workflow
described in section 2:

Creating a video mosaic of the previous flight: The video mo-
saic serves as 2D reference for both the previous and the current
video frames. Its creation is independent from the current flight
and therefore it needs not to satisfy realtime requirements with
respect to the current flight. In Figure 4, the video mosaic serves
as background image.

Change detection between previous and current frames: The
change detection is performed by the algorithms described in sec-

tion 3. In Figure 4, for three points in time the overlapping area of
the previous and the current video frame is darkened and overlaid
onto the background. Then, the colored change mask is overlaid
onto the overlapping area.

Derivation of the reference change mask: The change masks
from the frame pairs are aligned to the mosaic and therefore, for
each pixel of the reference mosaic, the occurrences of frame cov-
erings and of each change attribute can be accumulated. The final
change mask attached to the reference mosaic is derived from the
relative frequencies of the change mask attributes, e.g., by adap-
tive thresholding and morphological filtering to suppress small
changes. In Figure 4, the reference change mask is overlaid over
the background reference image where the pixels already have
been visited by the sweeping frames. In our example, we applied
the fixed thresholds 0.5 and 0.8 to the relative frequency of the
new and vanished objects (red and blue) in order to distinguish
between more and less significant changes (light red/light blue).

Compared to using aligned mosaics for change detection as de-
scribed in (Saur et al., 2014), we observe the following benefits:

• The change detection works on the original sensor images
and has not to deal with distortions of the mosaics.

• Deriving the reference change mask from the relative fre-
quency corresponds to a temporal filtering of the detected
changes. Thus, less frequently detected changes at a certain
pixel are suppressed due to their lower significance.

• Fast moving objects are suppressed for the same reason.
Slowly moving objects may be detected and their change
mask is corresponding to the objects’ movement and shape.
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Figure 4: Change detection results for the overflights over the scene access point from Fig. 1: Changes between previous and current
video frame for three different points in time (left, center, and right image) with the overlapping area of current and previous video
frame (darkened) and the reference video mosaic as background. In the progress of time, the overlapping area sweeps from the bottom
to the top and the mosaic gets updated by the overlapping area and by the reference change mask “behind” it. The change mask colors
correspond to Figure 2. The additional colors light blue and light red in the reference change mask indicate less significant changes.

• Since change detection between image pairs is not restricted
to Nadir viewing geometry (e.g., see 3rd row in Figure 3),
this approach can be extended to overflights with off-Nadir
viewing geometry by using an appropriate reference image.

Additionally, as shown for the different points in time in Fig-
ure 4, the video change detection can be implemented as process
following each new frame of the current overflight. Thus, in a
semi-automatic workflow, for each new frame, the visualization
of Figure 4 gets updated. A human image interpreter can observe
the overlaid change mask in the progress of time and may decide
which of the indicated changes are relevant for his task.

5. CONCLUSIONS AND FUTURE WORK

We presented (1) a new feature based approach for detecting
changes in aligned image pairs, we (2) combined it with our pre-
vious approach based on extended image differencing (Saur et al.,
2014), and we (3) introduced a method for its application to video
image sequences. Several examples, using repeated UAV video
overflights over a scene, show the benefit of the approach com-
pared to (Saur et al., 2014). Additionally, an attributed change
mask is created by distinguishing new objects from vanished ob-
jects and changed objects areas.

The main drawbacks of the approach lie in the missing modelling
of moving objects and of the 3D structures of the scene. How far
the application is limited to near-Nadir viewing geometry can be
explored e.g. by using simulation (Saur and Bartelsen, 2015).

In a further step we plan to separate the changes caused by mov-
ing objects from changed static objects by integrating a compo-
nent for motion detection and tracking. Further extensions of the
algorithms would be considering other types of features such as
texture or incorporating an available 3D model of the scene.
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