The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLI-B7
https://doi.org/10.5194/isprs-archives-XLI-B7-593-2016
https://doi.org/10.5194/isprs-archives-XLI-B7-593-2016
21 Jun 2016
 | 21 Jun 2016

AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

C. Xu, H. G. Sui, D. R. Li, K. M. Sun, and J. Y. Liu

Keywords: SAR images, image registration, multi-features, multi-measures, visual saliency model, iteration strategy

Abstract. Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.