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ABSTRACT: 
 
Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of 
electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for 
alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as 
a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before 
time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the 
potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use 
of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of 
Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic 
extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its’ outline and areal coverage; 
and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, 
in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient 
information about the viability of a particular building roof for solar photovoltaic installation. 
 
 

*  Corresponding author 
 

1. INTRODUCTION 

Countries around the world are grappling with the challenge of 
finding and promoting various sources of sustainable energy, 
which will align their attitude towards energy consumption with 
their environmental, social and economic targets (IEA, 2012). 
Likewise, both developed and emerging countries face similar 
energy and environmental challenges. South Africa, being 
among the developing countries is no exception. As a matter of 
fact, South Africa’s energy demand is projected to double its 
current levels by 2030 (SA GCIS, 2013).  
 
Various studies have shown that renewable energy sources, 
especially the solar energy using photovoltaic systems, offer a 
viable and expedient means of meeting shortfalls in electricity 
production within a short period of time (Timilsina et al., 2012; 
Krupa & Burch 2011; Pegels 2010). Also, it has been 
discovered that in most part of the world, the technical potential 
of solar energy often exceeds the prevailing total primary 
energy consumption of such areas, when evaluated (De Vries et 
al., 2007). The viability of solar energy was recently further 
made obvious with its implementation in powering an aircraft 
(Solar Impulse 2): for the first time in history, an aircraft was 
able to fly day and night, even for longer periods of time, up to 
100 hours, without using fuel. 
 
This study was aimed at demonstrating how remote sensing and 
GIS techniques can be integrated to automatically extract 
building roofs, and evaluate its potentials for solar 
photovoltaics in the city of Cape Town. Considering the huge 

number of buildings involved, the automatic roof extraction 
process becomes a vital aspect of rooftop solar photovoltaic 
evaluation, especially when existing building roof outlines are 
not readily available as input. In achieving this, LiDAR-derived 
surface models were integrated with aerial imagery to detect and 
automatically extract each building roof outline. Then the 
global solar radiation over each roof surface was estimated 
using a LiDAR-derived DSM. The final stage involved 
combining the outputs of the automatic roof extraction process, 
the solar radiation estimation with other energy exploitation 
parameters, such as solar panel efficiency to determine an 
estimate of electricity each building roof can harvest through 
the solar photovoltaic systems. 
 
 

2. BACKGROUND 

2.1 Solar Energy 

Solar radiation can be harnessed and converted to electricity 
using the photovoltaic cells, which absorbs photons and then 
release electrons, these can then be captured in the form of an 
electric current (Knier, 2002). However, there are some key 
issues affecting the wider use of solar energy, these includes 
strong spatial and temporal variations, as well as the ability to 
efficiently quantify the amount of solar radiation incident over a 
surface (Hofierka & Kanuk, 2009). 
 
Three sets of factors mainly determine the amount of solar 
radiation passing through the atmosphere to reach any surface 
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on the earth; these could be spatial or temporal. It includes, 
atmospheric conditions, geometry of the earth and the terrain 
(Suri & Hofierka, 2004). To determine the solar photovoltaic 
potential of a building roof, two main stages are involved. The 
first stage involves extracting the building roof outline in order 
to determine the roof area; while, the second stage involves 
calculating the amount of global solar radiation incident upon 
such roof, so as to estimate its solar photovoltaic potential. 
  
2.2 Automatic Extraction of Building Roofs 

The detection and extraction of relevant features from remotely 
sensed data is fast becoming important in various fields of 
application, such as city planning, homeland security, disaster 
management, real estate industry, enumerations and electricity 
utility among others (Cheng et al., 2008). The accurate 
extraction of the roof structure from a LiDAR data and/or 
satellite imagery is vital in estimating the rooftop solar 
photovoltaic potential of an area or region. However, 100% 
successful automatic extraction of buildings or rooftops is still 
an unachievable goal, as a result of scene complexity, 
incomplete cue extraction and sensor dependency (Sohn & 
Dowman, 2007). 
 
Building or rooftop detection techniques can be categorized into 
three groups, namely extraction from imagery, extraction from 
LiDAR data, or integration of imagery and LiDAR data (Lee et 
al., 2008). The earliest form of automatic extraction of man-
made objects, such as rooftops, buildings and roads from urban 
scenes were carried out using aerial imagery as input. However, 
the introduction of LiDAR has indeed offered a favorable 
alternative for improving the level of automation in building 
detection and extraction, as compared to image-based extraction 
(Vu et al., 2009). Even with the improvements brought about 
with the introduction of LiDAR data, some authors have 
identified various issues with object extraction using the LiDAR 
data only. Amongst such, LiDAR data often provide more 
reliable height information but inconsistent boundary lines, and 
some regions in LiDAR data do possess null values as a result 
of the self-occlusion of a building or if water is present 
(Awrangjeb et al., 2010). 
 
The integration of LiDAR data with imagery however, provides 
complementary benefits in extracting features, especially 
building rooftops, as each technique compensates for the 
shortcomings of the other (Awrangjeb et al., 2010). The 
combination of LiDAR data with imagery to extract building 
roofs offers increased options, such as the use of height, spectral 
and intensity information. Various combinations of such 
options are then used in extracting any object of interest. 
Extraction processes using the integration of LiDAR data and 
imagery can be further differentiated into “Edge Detection and 
Extraction” approach and “Rule-based Classification” approach. 
Both approaches make use of elevation models derived from 
LiDAR data together with the aerial imagery. 
 
Edge detection involves using algorithms to locate 
discontinuities in intensity values within an image scene. Edge 
detectors function by searching for areas within an image scene, 
where brightness changes swiftly within a short distance (Li et 
al., 2013). Previous studies that have employed edge detection 
and extraction technique in extracting object of interest includes 
(Awrangjeb et al., 2010; Awrangjeb et al., 2013; DongHyuk et 
al., 2008; Sohn et al.,  2007). 
 

The rule-based classification involves exploring features of 
interest in an image scene with a view to determining various 
characteristics and parameters that can be used to separate or 
extract them from other features in the image. Once these 
characteristics has been identified based on the user’s 
knowledge of the features, rules are set using thresholds of the 
identified characteristics, for instance texture, to classify such 
features into appropriate classes. This approach was adopted in 
this study to detect and extract the building roofs. 
 
2.3 Modelling Solar Radiation 

Measuring solar radiation has been an area of interest for a long 
time, and this is due to its importance, as many human and even 
plant activities depend on it (Fu & Rich, 2000). It is the amount 
of solar energy incident upon any surface of the earth. Global 
solar radiation is the combination of three components namely, 
direct (beam) radiation, diffuse radiation and reflected radiation 
(Perez et al., 1987). The direct and diffused radiation amounts 
to the most significant global solar radiations, while the amount 
of radiation contributed from the reflected radiation is less, but 
more prominent for inclined surfaces. It is sometimes omitted in 
some models (Hofierka & Suri, 2002).  
 
When modelling or estimating the solar potential of a surface, 
several important parameters must be considered, namely, 
surface relief or topography, geographic location, shadowing 
from nearby elevated features, atmospheric attenuation and 
scattering (Kodysh et al., 2013). There are three main 
techniques of generating spatially continuous solar radiation 
values for any surface, based on the data type. These include; 
ground weather station based model, meteorological satellite 
based model and GIS-based models. Some of these techniques 
do have area of correlation or sometimes integrated, but there 
are individual strength and weakness inherent in each. 
  
The ground station and satellite weather based models are more 
suited for large-scale studies, because of its typical low 
resolution and region-wide coverage. The resolution for the 
solar radiation database derived from these two models ranges 
from 1km and beyond. The highest range of the resolution (+/- 
1km) is made possible as a result of integration with digital 
surface models (DSM) (Suri et al., 2015). The GIS-based 
models are more suited for small-scale studies, usually at the 
municipality level. The resolution of the resultant solar 
radiation database is usually that of the DSM utilized. Solar 
radiation models integrated within the GIS provides an efficient 
and accurate means of estimating solar radiation over any 
surface. Using these models, surface characteristics such as 
slope, orientation and shadow are efficiently modeled and 
considered in providing radiation estimates (Hofierka & Suri, 
2002).  
 
Some of the available GIS-based solar radiation model includes 
SolarFlux by Dubayar and Rich (1996), the SRAD model by 
Wilson and Gallant (1998), the ESRI Solar Analyst by Fu and 
Rich (2000) and r.sun model in GRASS GIS by Hofierka and 
Suri (2002). The r.sun model implemented in the open-source 
GRASS GIS and the Solar Analyst in ArcGIS are more popular, 
but the r.sun model has been extensively tested and found to 
present advantages over the popular Solar Analyst and other 
GIS-based models (Ruiz-Arias et al., 2009; Jakubiec & Reinhart 
2012; Camargo et al., 2015). Some of the advantages delivered 
by the r.sun model include providing better estimates, 
accounting for reflected radiation, speed, and its open source 
implementation, which creates an opportunity for convenient 
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scripting and modifications (Camargo et al., 2015). 
Consequently, the r.sun model was adopted for estimation in 
this study. 
 
2.4 Evaluating Solar Photovoltaic Potential 

There are at least two important criteria necessary in 
determining suitable area for rooftop solar photovoltaic 
installations. One of such criteria is the size of usable roof area, 
which must be large enough to hold significant number of solar 
panels; the second criteria involves the high efficiency of the 
roof portion in retrieving solar insolation (Jakubiec & Reinhart 
2012). Other parameters considered in evaluating the solar 
photovoltaic potential include panel efficiency, shading, 
orientation, tilt or slope, and, often, the losses encountered 
during conversion from direct current to alternating current. 
Calculating the solar photovoltaic potential entails determining 
the geographic potential, the physical potential, and the 
technical potential. The geographic potential refers to the useful 
roof area that can accommodate the solar photovoltaic panels, 
while the physical potential is the viable solar radiation incident 
on the roof area, and the technical potential refers to the 
efficiency of the photovoltaic system (Bergamasco & Asinari 
2011). 
 
 

3. METHODOLOGY 

The methodology adopted in estimating the solar photovoltaic 
potential is divided into two stages. The first stage covers the 
procedure followed in extracting the building rooftops. While 
the second stage deals with the estimation of the global solar 
radiation, and the equation to calculate the amount of electricity 
generated from each building roof. 
 
3.1 Roof Extraction by Rule-based Classification 

The complementary advantages of integrating LiDAR data with 
high-resolution imagery is a useful strategy for extracting neat 
and smooth building or roof boundaries (Li et al., 2013). It is of 
the utmost importance that the LiDAR and imagery data were 
acquired around the same time and possesses similar spatial 
resolution. Rule-based classification systems are particularly 
important when ancillary data are to be incorporated in image 
classification, which becomes difficult for a typical 
classification technique to implement (Lawrence & Wright, 
2001). The most important process involved in any object-based 
classification analysis is the segmentation, as a suitably 
segmented image scene makes object classification much easier. 
Segmentation is the process of splitting an image scene into 
smaller homogenous pieces based on variations in the pixel grey 
values, texture or other supplementary data (Jinmei & Guoyu, 
2011). The outcome of a segmentation process is determined by 
parameters such as thresholds and seeds, depending on the 
application and the data used. Therefore, a few trials might be 
required before the substantive parameters can be identified and 
adopted (Bouziani et al., 2010).  
 
The most basic and simplest form of segmentation is called 
thresholding (Pujol, 2003). Other segmentation algorithms can 
be sufficiently classified as region-based and boundary-based 
(Carleer et al., 2005). Segmentation algorithms available within 
the eCognition developer software were used in this study; this 
includes multi-resolution segmentation (MRS), contrast split 
and multi-threshold segmentation. The contrast split 
segmentation algorithm splits and merges image pixels by their 

contrast using a threshold that best exploits the contrast between 
the dark and the bright image pixels (Definiens, 2007). The 
MRS algorithm involves a multi-scale image segmentation 
based on region merging. It begins with each pixel in the image 
scene as one image object or region and at each level, pairs of 
image object is merged using a decision threshold based on 
local homogeneity  criteria, to form larger image objects (Baatz 
& Schäpe, 2000). Basic parameters that affect the MRS 
algorithm are image layer weight, scale parameter, smoothness 
and compactness (Definiens, 2007). 
 
The rule-based classification process offers the possibility of 
automating the whole building roof extraction process, once a 
sample rule-set has been designed and tested across the study 
area. Using series of segmentation and classification techniques, 
a strategy was adopted to develop rule-sets, similar to the 
strategy used in Trimble (2010). In developing the strategy for 
detection and extraction, the slope raster was primarily 
considered. Slopes are known to be prominent around edges of 
elevated objects, because of the sharp difference in elevation to 
the ground. This makes the slope raster to produce high-contrast 
steep boundaries around elevated objects. This attribute of slope 
was considered an advantage in detecting and extracting 
building roofs. The next step involved using a ground raster 
mask generated from the LiDAR ground points to classify the 
ground areas. Once the steep and ground areas are classified, 
the building roof areas are mainly left, enclosed within the steep 
boundaries. The building roof can then be classified using the 
“enclosed” classification tool. The last step of the strategy was 
to remove misclassifications, and refine the building roof 
classification to obtain an accurate and a smooth outline. This is 
then exported as a shapefile.   A workflow diagram of the 
strategy is shown in Figure 1 below.  
 

 
Figure 1. Workflow diagram for extraction of building roofs 

The LiDAR-derived data (slope raster and ground raster mask) 
and aerial imagery were used as inputs in eCognition Developer 
9.1. The first process in the rule-sets requires the slope raster to 
be segmented using the contrast split segmentation algorithm 
(Segmentation 1) to create a steep boundary around each 
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building roof. After the contrast split segmentation, a 
classification process (Classification 1) was added to assign the 
segmented steep boundaries into a class (Steep). Since the slope 
raster was calculated in degrees, its’ pixel values ranges from 0 
to 90. The steep zones, characterized by high contrast (bright 
pixels) starts at pixel value of 35, this was then adopted as the 
threshold for classifying the steep areas. A classifier with a 
threshold condition of mean slope >= 35 then classifies the 
steep areas into the specified class (Steep). The next process 
involves classifying the ground areas using the ground raster 
mask as input. A multi-threshold segmentation process 
(Segmentation 2) was used to create ground object primitive. A 
classification process (Classification 2) was then added using a 
threshold condition to classify objects with mean pixel > 5 as 
ground areas. With the steep and ground area successfully 
classified, the unclassified areas left on the image scene were 
mostly building roof area and tiny areas within the tree 
canopies. 
 
The building roof areas, which are of interest, are all enclosed 
within the steep area.  Therefore, a classification process 
(Classification 3) was added to the rule-sets to classify areas 
enclosed by the steep class as building roof. However, the 
classification result might contain smaller objects that are not 
the building roof, especially tiny areas within large tree 
canopies. Therefore, another classification process 
(Classification 4) was added, using the area attribute as the 
logic, either to separate previously classified building roof 
objects into steep areas or to retain them as building roof 
objects. To clean up the building roof areas, a further 
segmentation algorithm (Segmentation 3) was added to break 
up the wide steep boundaries around the building roofs into 
narrower seams using the aerial imagery and the steep areas as 
inputs. This would allow the classified building roof area to be 
expanded into its actual outline as visible on the aerial imagery. 
The last classification process (Classification 5) was thereafter 
added to classify steep objects with close proximity to the 
building roof. The final stages of the rule-sets involved refining 
the building roof objects into a smoother and accurate shape. 
The vector handling algorithms were used in this process by 
first converting the building roof object into a vector thematic 
layer. A vector orthogonalization and simplification algorithm 
was then used to smoothen the roof outline edges. Finally, an 
export process was added to export the building roof outlines as 
a GIS shape-file. 
 
3.2 Estimating Clear-sky Solar Radiation 

The r.sun model incorporated within the GRASS GIS 
environment was adopted in estimating the global solar 
radiation for this study. It uses the sum of beam (direct), diffuse 
and reflected radiation component in clear-sky conditions to 
estimate the global solar radiation (Hofierka & Suri, 2002). The 
beam radiation component is estimated by considering the 
extra-terrestrial irradiance, which is essentially the solar 
constant and know to be 1,367 W.m-2 (Rigollier, et al., 2000). 
However, a correction is applied to this constant due to the sun-
to-earth distance, which varies marginally across the year 
(Hofierka & Suri, 2002).  
 
Since the diffuse radiation depends largely on the Linke 
turbidity factor for any solar altitude, the diffuse radiation 
increases as the turbidity increases, while the beam irradiance 
decreases (Hofierka & Suri, 2002). The reflected irradiance of 
an inclined surface under the clear-sky condition depends on an 

isotropic assumption. It is therefore, estimated as the sum of 
beam and diffuse irradiance proportional to the mean ground 
albedo and to a fraction of the ground viewed by an inclined 
surface (Hofierka & Suri, 2002). The r.sun model calculates the 
beam, diffuse and ground reflected radiation for a given day, 
location, surface and atmospheric condition. It functions in two 
modes: Mode 1 calculates the solar irradiance of an area or 
point for an instant of time (in seconds), and generates raster 
maps of the selected components, such as beam, diffuse and 
reflected radiation. Mode 2 computes the daily sum of solar 
irradiance and the duration of beam irradiation in minutes from 
the integration of irradiance values calculated for a specified 
time step, ranging from sunrise to sunset (Hofierka & Suri, 
2002). 
 
The second mode (Mode 2), which computes the daily sum of 
solar irradiation [Wh.m-2] was used to compute the global solar 
radiation in this study. As inputs, the r.sun model uses the DSM 
raster, DSM-based ancillary rasters (slope, aspect, latitude and 
longitude raster and horizon raster) and day number. Other 
parameters, such as albedo value, Linke turbidity coefficient 
and time steps, can be specified by the user. The workflow 
diagram for estimating the global solar radiation is shown in 
Figure 2 below. 
 

 
Figure 2. Workflow diagram for estimating solar radiation 

The r.sun model does not have the capability of calculating the 
global solar radiation over a period of time. However, a python 
script can be written to loop the daily radiation calculation over 
a period of time required, which is a year, for the purpose of 
this study. A python script was therefore written, which accepts 
only the DSM raster as input. The script uses the DSM to 
generate all the required raster input for the solar radiation 
calculation, these includes, slope, aspect, horizon, latitude and 
longitude. These then serve as the inputs for the loop solar 
radiation calculation. On completion of the loop for 365 days of 
the year, a code to aggregate and derive the mean annual 
radiation was also added to the script. 
 
3.3 Estimating Solar Photovoltaic Potential  

The first step in estimating the solar photovoltaic potential for a 
particular building roof is to determine the amount of useful 
area the roof can provide for the installation of photovoltaic 
panels. In determining the useful roof area, the space or area 
occupied by all roof-mounted objects, such as chimneys, 
HVACs and walls, are usually factored in and deducted from 
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the total roof area (Hofierka & Kanuk, 2009; Jo & Otanicar, 
2011). However, it can be argued that the roof outline extracted 
from the integration of LiDAR and aerial imagery actually 
represents the roof span area, as seen from the top, and not 
specifically the real roof area. However, this argument only 
holds for pitched roofs. The real area of a flat roof is essentially 
the same as its roof span area, as there is no rise or run. This is 
better illustrated in Figure 3. 

 
Figure 3. Building roof geometry 

Suffice to say, if a pitched roof is flattened to a zero inch pitch 
or a zero degree slope, its span area will be greater, than when it 
was still pitched, say at an angle of 350. Therefore, it can be said 
that the roof span area obtained from the automatic extraction of 
building roofs underestimates the actual roof area. This 
underestimation, in essence, would have catered for the area lost 
to any roof-mounted object or space required between solar 
panels during installation. Therefore, this study will adopt the 
roof span area as obtained from the automatic roof extraction 
process as the useful area in order to estimate the general 
photovoltaic potential. To calculate the useful roof area (RUA) 
for the optimum solar photovoltaic potential, all the north 
facing (north-east to north-west) pixels from aspect calculation 
will be extracted and converted to an area (polygon). The 
second step involved in estimating the rooftop solar 
photovoltaic potential is to determine the mean solar radiation 
(SMR) incident on each building roof. The processes involved 
are listed as follows: 

• The extracted building roof outline is used to 
clip the mean solar radiation raster. The output gives 
the solar radiation estimates within each building roof 
outline. 

• Obtain the mean value of all raster pixel’s value 
falling within each roof outline. 

 
The final step involved is to determine the amount of energy 
exploitation involved in converting the solar energy to 
electricity. Factors considered here include solar panel 
efficiency and the performance ratio (conversion coefficients), 
which takes into account sub-factors, such as losses due to 
temperature and shading, losses due to dust and snow, inverter 
losses, AC/DC cable losses and other losses. Solar panel 
efficiency (PE) of 15% was adopted for estimation in this study, 
this represents the average efficiency of the crystalline silicon-
based solar panels, which are more commonly used (Jo & 
Otanicar, 2011). The performance ratio or conversion 
coefficient for a typical roof-mounted mono/polycrystalline 
panel ranges from 0.75 to 0.77 (Hofierka and Kanuk, 2009; Suri 
and Hofierka, 2004). Therefore, a performance ratio (PR) of 
0.76, which is the mean of the range stated above, was adopted 
for estimation in this study. Combining the three factors stated 
earlier produces the solar photovoltaic potential of a building 
roof. The formula adopted in this study to estimate the 
photovoltaic potential denoted as EOUT is given as: 
 
EOUT = (RUA * SMR * PE * PR) / 1000 (1) 

 
Where EOUT = Electricity Output (kWh) 
 RUA = Useful Roof Area (m2) 
 SMR = Mean Annual Solar Radiation (Wh/m2) 
 PE = Panel Efficiency (%) 
 PR = Performance Ratio 
  
 

4. ANALYSIS AND RESULTS 

 
4.1 Study Area 

The city of Cape Town in the Western Cape Province of South 
Africa was chosen for this study. The city was considered ideal, 
because the primary data required for this study, namely, 
LiDAR data and aerial imagery, are readily available. The city 
of Cape Town is a coastal city covering an area of 2,461km2. It 
lies on the 34th latitude and has an annual average temperature 
of about 17oC. The average amount of sunshine hour per annum 
is about 3,100 hours. 
 
4.2 Data Preparation 

The LiDAR data and aerial imagery used in this study were 
sourced from the City of Cape Town municipality. The LiDAR 
and aerial data were acquired in batches over a space 2 years 
(2012 - 2014). The LiDAR data has an average point spacing of 
60cm, while the aerial imagery has a spatial resolution of 8cm. 
The registration of the two data had already been done by the 
vendor. However, a check was carried out by overlaying the 
LiDAR data and aerial imagery in ERDAS IMAGINE, while 
feature edges were visually zoomed into to ascertain they 
aligned with each other. The verification becomes necessary, as 
the LiDAR data and aerial imagery would be eventually 
integrated to extract each building rooftop. To allow for faster 
and easier management of files, due to the large size of the 
LiDAR data and the aerial imagery. The LiDAR and aerial 
imagery for the study area were divided into manageable tiles. 
A tile size of 1 km2 (1,000m by 1,000m) was adopted. Each of 
the tiles containing buildings was then utilized in the analyses.  
 
The LiDAR data used to create the surface models utilized in 
this study has been pre-processed and classified into ground and 
non-ground points by the vendor.  The ground points only were 
then filtered into a new LiDAR file and this was used to 
generate the ground raster mask. Filtering the ground points 
into a new file leaves the areas occupied by elevated objects 
void without points. The ground points were then interpolated 
by binning without filling the void areas. The resultant ground 
raster mask consequently has the areas occupied by elevated 
objects such as buildings and trees as no-data pixels. A pixel 
size of 1.5m was adopted for the ground raster mask, since the 
LiDAR data has an average of 60cm point spacing. This will 
reduce the occurrence of no-data pixels within the ground areas. 
To generate the DSM required for solar radiation estimation, the 
pre-processed LiDAR points were interpolated directly through 
binning. Binning technique of interpolation was considered 
adequate for LiDAR data, because of its high point density. 
Other analyses carried out are as follows.   
 
4.3 Building Roof Extraction 

The building extraction process was carried out using the rule-
set mode of the eCognition 9.1 software. Three inputs namely 
aerial imagery, slope raster and ground raster mask was 
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imported into the created project. Aliases were assigned to each 
band of the inputs for correct identification. The processes 
outlined in the workflow for building roof extraction as 
designed in the methodology was followed in the analysis to 
automatically extract the building roofs. The steep boundaries 
surrounding the building roofs were first classified; this was 
followed by the ground areas, leaving basically the elevated 
objects such as buildings and trees as shown in Figure 4 (a) 
below.  The areas occupied by each building roof are enclosed 
within the green steep boundaries as shown in Figure 4 (a). This 
attribute makes the detection and classification of the building 
roof straightforward. However, this strategy misclassifies some 
tiny enclosed areas sitting on top of trees as shown in Figure 4 
(b) below. 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4. Classification Results 

The final stage of the analysis to extract the building roofs 
involved refining the building roof classification to obtain a 
smooth outline around each building roof. Processes followed 
include removing misclassifications, mostly tiny areas of the 
tree classified as building roof. This was carried out by setting a 
threshold for the area of the objects. Objects previously 
classified as building roof with an area less than 16m2 were 
therefore reclassified as steep objects. The next step dealt with 
extending the classified building roof to match its actual 
outline. Therefore, for the first time in the extraction process, 
the aerial imagery data was put to use. Two major processes 
were implemented: the first reduced the wide steep object edges 
to narrow edges, and the second was used to grow the building 
roof objects into the thin steep edges spectrally similar to it. The 
final step in obtaining the building roof outline involved 
converting the building roof objects into vector object, and 
smoothening out the edges, using the vector handling tools. On 
completion, the vector objects were exported as a shapefile. 
Figure 5 below shows a sample of the final building roof 
classification result. 
 
 
 
 
 
 
 
 
 

 

Figure 5. Final building roof extraction 

With the rule-sets developed and tested with sample tiles across 
the study area, subsequent roof extraction analysis becomes 
faster. A project is created for the next grid tile, required data 

are imported and named correctly, and the saved rule-sets are 
loaded. The entire parent process is then selected to run, while 
the extracted building roof outline is saved in the specified 
folder. The essence of the building roof extraction analysis was 
to obtain the area of each building roof, as this forms a vital 
input, required when calculating the photovoltaic potential of a 
building roof. Also, the roof outline would subsequently be 
used in defining the extent and boundary of the building roof in 
solar radiation analysis.  
 
4.4 Estimation of the Global Solar Radiation 

The solar radiation analysis was carried out using the open 
source GRASS GIS 7 software. The primary data source 
utilized in estimating the global solar radiation was the DSM; 
other ancillary input data were also generated from this. The 
elevation model thus constituted the main input data for 
estimating solar radiation. The GRASS GIS required the 
creation of a working directory, a location, and a mapset folder 
before it could be initialized; all the outputs generated thereafter 
are then saved in the created mapset.  Mapset was created for 
each grid tile, and its name included the grid number for easy 
identification. The Python script was designed to loop through 
the whole year and to output the mean annual radiation; this 
was implemented by launching it in the GRASS GIS 
environment. Before the script was launched, the DSM raster 
was imported into the GRASS environment. The computation 
region for each analysis was set to the imported elevation 
model. Thereafter, necessary edits were carried out on the 
Python script, such as specifying the appropriate working 
directory, the mapset and the imported elevation model. Figure 
6 below shows the mean annual global solar radiation raster for 
a sample area. 
 
 
 
 
 
 
 
 
 

 

Figure 6. Mean annual global solar radiation 

The method employed for estimating the global solar radiation 
adequately models the orientation of the roof via the aspect 
map, and the tilt of the surface by using the slope map. Also, the 
shading factor was modelled by using the horizon computation. 
The shortcomings of having to feed in each input, as required 
by the r.sun tool, were eliminated by opting for the scripting 
option. The aspect and slope maps are two important inputs to 
the estimation of the global solar radiation, as they provide the 
required detailed surface characteristics of the building roof, 
which could not be derived directly from the DSM. The 
estimate obtained using the r.sun tool was based on a clear-sky 
solar radiation model. The real sky estimates could, however, be 
derived by applying the clear-sky insolation index. The clear-
sky index value ranges from 0 to 1.0, and can be obtained from 
the NASA website. It is defined as the ratio of radiation above 
the atmosphere to that which reaches the ground surface during 
clear-sky days. The correction is applied by multiplying the 
clear sky solar radiation estimate with the clear-sky insolation 
index (Hofierka & Suri, 2002). 
 

(a) (b) Building roof 
Steep 
Ground 

High: 7229.72 Wh/m2 

Low: 2232.09 Wh/m2 
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4.5 Analysis of Solar photovoltaic Potential Estimation 

Obtaining an estimate for the solar photovoltaic potential of 
building roofs entails combining results from the two previous 
analyses, together with the amount of energy exploited while 
converting solar energy to electricity. The energy exploitation 
factors are expressed as constants, while the useful roof area 
and the mean solar radiation values are the variables. 
Essentially, the attribute table of the extracted building roof 
outline was utilized as the workspace to carry out the 
calculation, thereby functioning as a spreadsheet. To estimate 
the general potential for each building roof, the first step entails 
adding the energy exploitation parameter fields and values to 
the building roof table. Next, involves clipping the solar 
radiation raster with the building roof outline, and obtaining a 
mean solar radiation value per building. Thereafter, the mean 
value information is merged with other attributes contained in 
the building roof table already. Then, the general solar 
photovoltaic potential was calculated using the formula 
adopted. A sample result of the general estimate is shown in 
Table 1 below. 

Table 1. General solar photovoltaic potential 

Further analysis were carried out to extract and obtain the 
optimum sections of the building roof and to determine its 
optimal percentage. These, and other analyses could be carried 
out and the information generated added to the database, to 
make it comprehensive. Finally, to create a user friendly solar 
photovoltaic database, each building roof was geocoded to 
obtain its location address. This was carried out using the 
address database of the city. Coupling the building’s address 
with its solar photovoltaic potential will present the user with 
the option to search, view and extract the relevant solar 
photovoltaic information about a building of interest. A trial 
search was carried out, to search for buildings with low 
photovoltaic potential, at a threshold 40%. The search result 
returned building roofs with optimal percentage less than 40% 
as shown in Table 2 below. 

Table 2. Buildings with low photovoltaic potential 

 

4.6 Validation 

The results obtained from the analyses carried out in this study 
was assessed for accuracy. This was carried out for the building 
roof extraction process, using the error matrix. While the solar 
photovoltaics potential estimate was assessed using power 

output data from an existing large capacity roof-mounted solar 
photovoltaic system within the study area.  
 
The accuracy assessment of the building roof classification and 
extraction was carried out within the eCognition software 
environment using the “Error matrix based on TTA Mask” 
option. The error matrix based on training and test area (TTA) 
mask uses the TTA mask as a reference to check the 
classification accuracy by comparing the classification with the 
ground truth based on pixels (Definiens, 2007). Selecting a 
random grid tile from the processed data, samples for the 
reference class was generated by digitizing the building roof 
outlines, steep and ground areas in ArcGIS. These samples were 
imported into eCognition as a thematic layer and were used to 
create image objects using the chessboard segmentation tool. 
Each class was assigned the appropriate and adequate samples, 
while a TTA mask was generated from the selected samples. 
The generated mask was then compared with the classification 
output using the accuracy assessment tool. The error matrix 
result shows that the building roof classification has a producer 
accuracy of 99.8%, user accuracy of 99.7%, and kappa index of 
agreement (KIA) of 97.2%. While the overall accuracy reads 
99.2%. The error matrix result shows that the feature extraction 
processes carried out was very successful and of good accuracy. 
 
The solar photovoltaic estimate obtained from the analysis was 
compared with an existing roof-mounted solar photovoltaic 
system. The installation is currently known to be the largest 
solar photovoltaic system in Southern Africa, with an installed 
capacity of 1.2 megawatt. It is also rated among the 30 largest 
roof integrated solar photovoltaic system in the world, and 
follows closely, that of Google headquarters, USA (1.6 MW), 
the Rome Trade Fair, Italy (1.4 MW) and Toyota Parts Centre, 
Belgium at 1.8 MW capacity. The installation was broken down 
into two phases, a 700Kw capacity was completed in July 2013 
and another 500Kw was completed in August 2014. For an 
ideal comparison, the existing system should have generated 
output for at least a year (12 months). This is necessary, since 
the estimate from this study is based on the mean annual solar 
radiation to yield a mean daily potential output.  A 12 month 
(August 2013 – July 2014) generation output data for the first 
phase was provided by the owner (Black River Park) of the 
facility for verification purpose. These monthly output values 
from the installed system were compared with estimated 
monthly value from the study, which yielded a good comparison 
result as shown in Table 3 and Figure 7 below. 
 

Month Installed 
Output (kWH) 

Estimated 
Output (kWh) 

Difference 

January 112961.742 112223.154 -738.588 
February 109775.184 92089.687 -17685.497 
March 95305.976 85174.427 -10131.549 
April 71361.913 63320.845 -8041.068 
May 45323.614 49311.860 3988.246 
June 41180.847 40516.378 -664.469 
July 47016.077 45033.169 -1982.908 
August 57712.564 57965.647 253.083 
September 77463.109 73923.606 -3539.503 
October 98750.166 94900.372 -3849.794 
November 105894.509 108602.656 2708.147 
December 116182.517 114631.574 -1550.944 

Annual output 978928.218 937693.375 -41234.843 
Monthly mean 81577.351 78141.115 -3436.237 

Daily mean 2681.995 2569.023 -112.972 

Table 3. Comparison between the installed and estimated output 

ID Shape
_Area 

Solar_Radi
ation_Est 

Panel_E
fficiency
_Percent 

Performan
ce_Ratio 

General_PV_
Potential_Esti
mate (kWh) 

1 76.267 6068.149 15 0.76 52.759 

2 46.388 5501.953 15 0.76 29.095 

3 241.88 5934.168 15 0.76 163.631 

4 25.736 5802.981 15 0.76 17.025 

ID Solar
_Rad
_Est. 

General
_PV_E
st. 

Opt_R
oofAr
ea 

Opt_Sol
ar_Rad_
Est 

Opt_
PV_
Est. 

Opt
.% 

Full _Address 

44
4 

5539
.11 

170.77 28.32 6183.40 19.96 11.
69 

25  CLOVELLY 
Avenue 
VREDEHOEK 

45
3 

5553
.26 

186.06 35.20 6293.09 25.25 13.
57 

13  CLOVELLY 
Avenue 
VREDEHOEK 

47
6 

5606
.92 

68.12 16.48 6096.94 11.45 16.
81 

17 JUTLAND 
Road 
VREDEHOEK 
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Figure 7. Monthly variation between the installed system and 
the estimated potential 

This validation result shows that the estimates gotten, using the 
methods adopted in the study, is quite good and can be relied 
upon for planning and decision making purposes. 
 
 

5. CONCLUSION 

A method to automatically extract building rooftops and 
evaluate their solar photovoltaic potential has been described, 
and this has been applied to city of Cape Town, South Africa. 
The study made obvious how the integration of LiDAR data and 
aerial imagery could be harnessed, using remote sensing and 
GIS techniques to evaluate the solar photovoltaic potential at 
municipal scale. The automatic roof extraction method forms an 
integral aspect of the entire process, considering the vast 
number of buildings to be evaluated. Manually digitizing each 
building roof would have taken a great deal of time and human 
recourses to accomplish.  
  
Information generated from the solar photovoltaic database 
could be used as a decision making tool by public authorities, 
such as municipalities, as well as by private sector, in assessing 
and determining sets of buildings roofs viable for solar 
photovoltaic installations. This offers an effective solution, 
given the planning intricacies involved in the widespread 
installation of solar photovoltaic systems. Ignoring or avoiding 
this necessary stage, of evaluation and assessment, could result 
in a significant loss of time and resources. 
 
From the results generated from this study, it was also observed 
that the size of a building roof plays a prominent role in the 
amount of electricity a building roof can harvest, as roof 
sections facing south could still harvest a tangible amount of 
solar radiation. Other factors such as the roof pitch could be 
maneuvered to some extent by varying the tilt of solar panels 
during installation, except in cases of near vertical building 
roofs. 
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