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ABSTRACT: 

 

We examined the dependency of the pixel reflectance of hyperspectral imaging spectrometer data (HISD) on a normalized total 

insolation index (NTII). The NTII was estimated using a light detection and ranging (LiDAR)-derived digital surface model (DSM). 

The NTII and the pixel reflectance were dependent, to various degrees, on the band considered, and on the properties of the objects. 

The findings could be used to improve land cover (LC)/land use (LU) classification, using indices constructed from the spectral 

bands of imaging spectrometer data (ISD). To study this possibility, we investigated the normalized difference vegetation index 

(NDVI) at various NTII levels. The results also suggest that the dependency of the pixel reflectance and NTII could be used to 

mitigate the shadows in ISD. This project was carried out using data provided by the Hyperspectral Image Analysis Group and the 

NSF-funded Centre for Airborne Laser Mapping (NCALM), University of Houston, for the purpose of organizing the 2013 Data 

Fusion Contest (IEEE 2014). This contest was organized by the IEEE GRSS Data Fusion Technical Committee. 
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1. INTRODUCTION 

Passive remote sensing (RS) is based on the assumption that 

solar energy reflected from objects varies in intensity across 

spectral bands as a function of the physicochemical properties 

of these objects. It is also known that the properties of the 

reflected energy depend on its incidence angle in respect to the 

surface of the object reflecting it. The impact of this effect on 

the classification of imaging spectrometer data (ISD) sets has 

been addressed in several studies (Henrich et al., 2014, Teillet, 

1982, Meyer et al., 1993,  Sandmeier, et al., 1997, Richter, 

1998, Riaño, et al., 2003, Conese, et al., 1993, Civco, 1989, 

Chavez, 1996). Most of these studies have focused on finding a 

way to compensate for the variable incidence angle. Based on 

these studies, a few terrain-correction procedures have been 

proposed (Henrich et al., 2014, Yuan, et al., 1996, Shepherd, et 

al., 2003). A concise overview of the most successful terrain-

correction methods can be found in Riaño et al., (2003). The 

performance of topography-correction methods for selected 

types of ISD data sets and selected types of land cover (LC) has 

also been reported (Riaño, et al., 2003, Shepherd, et al., 2003, 

Alonzo, et al., 2014). These methods use digital surface models 

(DSMs) to estimate the incidence angle of the solar irradiation. 

Various sources of topography data are available. These include 

the Shuttle Radar Topography Mission (SRTM), the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), SPOT DEM, and Light Detection and Ranging Laser 

(LiDAR) models. The accuracy of these DEMs varies from 

approximately 0.15 m (LiDAR) and 2.0 m (SRTM) to 7.0 m 

(ASTER v2.0) (Becek, 2014). 

In this report we summarize our investigations of the 

relationship between the pixel intensity of 144 bands of an ISD 

set for 15 land use/land cover classes, in addition to the impact 

of our findings on remote sensing (RS) studies. This study 

differs from previous work by its use of an HISD set (144 

bands) and by its assessment of the solar incidence of objects at 

a very high spatio-temporal resolution.  

 

The key variable considered in this study is the insolation. 

Insolation is defined as the total solar irradiance arriving at a 

unit of horizontal surface of the Earth within a unit of time 

(Dubayah et al., 1995, Fu et al., 2002, Justice et al., 1981). 

Insolation depends on a number of factors. These include 

atmospheric effects, site latitude and elevation, slope and 

aspect, effects of shadows cast by surrounding topographic 

features and daily and seasonal shifts in the Sun’s angle. 

Insolation is expressed in watt hours per square meter (Whm-2). 

Insolation is composed of direct and indirect components. The 

latter component originates from the solar irradiation diffused 

by the atmosphere (Justice et al., 1981). The defused component 

of solar irradiation means that objects in shadow can still be 

seen. The major differences between direct and indirect 

components of the insolation are: a) The intensity of defused 

insolation is lower, and b) the spectrum of defused insolation is 

significantly different from the spectrum of direct insolation 

(Civco, 1989, Churma, 1994).  

 

The calculation of the insolation at a given location and time is 

relatively easy because it requires only a DSM. The calculation 

becomes more difficult in the presence of cloud shadows 

because they are random events. In this project, we used pixels 
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affected by a cloud shadow to investigate the spectral 

differences between the direct and defused components of solar 

irradiance. The cloud shadow was present when the 

hyperspectral imaging spectrometer data (HISD) set was 

captured. 

 

To summarize, one may state that the characteristics of the 

intensity of solar energy across the spectrum depend not only on 

the physicochemical properties of objects but also on their 

orientation in relation to solar irradiance, topography and 

shadows. In addition, the spectrum of the defused solar 

irradiance is different from that of direct solar irradiation. Thus, 

the results of RS are subject to the aforementioned factors. 

 

The aim of this contribution is to demonstrate the impact of 

solar irradiation on HISD sets and their resulting classification. 

 

2. METHOD 

Insolation can be expressed as follows: 

 

diffdir III     (1)  

),( tLfI      (2) 

 

where  the indices ‘dir’ and ‘diff’ indicate the direct and 

indirect components of insolation, respectively 

L is the vector of atmospheric, topographic and 

geographic parameters 

 t is the time 

  

The total insolation (G) for a given location and a specific 

period can be calculated from the following integral: 

 


T

o

kdtIG     (3) 

 

where   T is the timespan 

 Ik is the insolation at location k 

 

According to Richter (1998), in rugged, hilly terrain, the slopes 

of the surrounding hills contribute extra irradiance to nearby 

areas and this additional irradiance should be considered in the 

calculations of insolation. However, this additional irradiance 

has not been considered in this study. 

 

In the present study, the total insolation, G, was calculated 

using the dedicated Toolbox of the ArcGIS software package. 

The solar constant was assumed to be 1367 Wm-2. To calculate 

the defused component, the sky was divided into 200 sectors. 

In this study we use a normalized representation of the total 

insolation: the normalized total insolation index (NTII). In a 

designated area, the NTII was defined as the ratio between the 

total insolation at a given pixel and the maximum value of the 

total insolation within the investigated area. To calculate the 

NTII, the acquisition time of the ISD set (2 min and 40 sec) and 

the geographical coordinates of the centre of the site (29° 43’ 

15’’ N and 95° 20’ 43’’W - WGS 84) were used. 

 

To demonstrate the potential impact that different NTII values 

may have on the results of RS investigations, we selected the 

following well-known index: 

 

RNIR

RNIR
NDVI




    (4) 

where  NIR and R refer to near-infrared and red reflectance, 

respectively. 

 

3. DATA 

LIDAR data and HISD were used in this project represent an 

area in the vicinity of University of Huston, Texas, USA 

(approx. centre at 29º43’N and 95º21’W). The LiDAR data 

were captured on June 22, 2012. The data were collected from 

an approximate altitude of 600 m. The elevation was in (m) 

above the Geoid 2012A. The elevations for the DMS were 

between 4.4 m and 70.8 m. No details were available on the 

instrument model, average LiDAR point density or accuracy of 

the elevations. The DSM was at 2.5 m spatial resolution and the 

accuracy of the model was not stated. 

 

A HISD set with 144 spectral bands in the 364–1046.1 nm 

region was acquired at a 2.5 m spatial resolution. The data were 

captured on June 23, 2012 over a period of 2 min. and 40 sec, 

beginning at 17:37:10 UTC (11:37:10 CDT). They were 

acquired from an approximate altitude of 1676 m (IEEE 2014) 

from a strip of 4762.5 m by 872 m (1905 × 349 pixels = 

664,845 pixels). Figure 1 shows the area of interests. 

 

 

Figure 1. The area of interests. A cloud shadow is visible in the 

eastern part of the scene 

The ground truth data contained 15 classes of LC/LU. In each 

class, there were approximately 190 pixels. Table 1 lists the 

ground truth classes. Column 3 shows a histogram of the classes 

identified. Some of the classes represent only a very small part 

of the AOI. We focused our investigations on classes that made 

up 2% or more of the AOI. 

 

ID Class Name (%) 

1 No data 1.8 

2 Grass healthy  7.5 

3 Grass stressed  17.0 

4 Grass synthetic  0.1 

5 Trees 10.6 

6 Soil 5.8 

7 Water 0.1 

8 Residential 8.2 

9 Commercial 11.9 

10 Road 13.9 

11 Highway 6.3 

12 Railway 4.9 

13 Parking lot 1 6.7 

14 Parking lot 2 5.0 

15 Tennis court 0.1 

Table 1. Ground truth classes and the number of pixels selected 

in each class. Some of the pixels were collected in the 

shadowed area 

The ground truth data were collected around the same time as 

the HISD. Some 19.8% of the total image area was under a 

cloud shadow. The extent of the shadow was estimated by 

visual interpretation. 
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The HISD set was classified using a novel method developed by 

Debes et al., (2014). According to the authors, the accuracy of 

the classification exceeded 90%. We used the classification data 

obtained by this method in the present study.  

 

4. RESULTS 

The calculations of the total insolation for the period of 

acquisition (2’ 40”) of the HISD set yielded values between 

0.115 and 36.518 Whm-2. The total insolation was 

subsequently normalized, as described above. The new variable 

was termed the normalized total insolation index (NTII). Figure 

2 shows a histogram of the NTII. As shown in Figure 2, the 

NTII exceeded 0.8 for approximately 74% of the area of the 

site. The remaining 26% constituted areas were exposed to less 

direct solar radiation due to the slope and aspect, or they were 

in shadows cast by elevated objects. This finding indicated that 

the topography of the site was relatively featureless and that the 

lower values of NTII were caused by shadows cast by elevated 

objects, including buildings. 

 

Objects in shadows are highlighted only by defused irradiance. 

Consequently, they appear darker in images. 
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Figure 2. Histogram of the NTII for the AOI 

To assess the impact of cloud shadows on the pixel reflectance 

across spectral bands, the mean pixel intensities of both the in-

shadow and no-shadow pixels were calculated for each spectral 

band. Figure 3 shows the ratio between the in-shadow and no-

shadow pixel intensities vs. the wavelength. 
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Figure 3. Ratio between the in-shadow and not in-shadow pixel 

intensities vs. the wavelength. The in-shadow pixels 

clearly appear more bluish and less reddish than the 

not in-shadow pixels 

  

The curve in Figure 3 confirms that the indirect component of 

the solar irradiation ‘promoted’ shorter rather than longer 

wavelengths. This observation may provide a clue as to how to 

mitigate effects of variable irradiation in a multi-spectral image 

across spectral bands. 

 

Note that the relationship between the NTII and pixel intensities 

shown in Figures 3 was calculated from all the pixels, 

irrespective of the material they represent. This may obscure the 

true picture of the relationship between the NTII vs. the 

wavelength. 

 

Figure 4 presents the results of an experiment with the not in-

shadow pixels only for all classes of LC/LU in which we 

evaluated the relationship of the reflectance with the wavelength 

and the NTII. A clear conclusion from Figure 4 is that the 

character of the relationship depends on the wavelength: the 

pixel reflectance is less susceptible to the NTII for shorter 

wavelengths, and more so for longer wavelengths. This 

observation is consistent with the curve shown in Figure 3 and 

subsequent comments. The examples of extreme high pixel 

reflectance, which are clearly visible in Figure 4, are outliers. 

 

 
Figure 4. Mean pixel intensity vs. the NTII and wavelength. 

Only not in-shadow pixels were considered 

 

The relationship of the mean pixel intensity vs. the NTII and 

wavelength shown in Figure 4 was calculated without 

considering the LC/LU class. Next, we investigated this 

relationship for individual LC/LU classes. Figure 5 shows the 

mean pixel intensity vs. the NTII and wavelength for selected 

LC/LU classes. Looking at Figures 4 and 5, it appears that the 

type of LC influences the character of the relationship of 

reflectance with NTII and wavelength. This phenomenon may 

have some implications for the use of spectral indices in the 

identification of LC materials. To confirm this assertion we 

conducted some experiments which we report on herewith. 

 

 
Figure 4. Mean pixel intensity vs. the NTII and wavelength for 

selected classes of LC/LU 

 

A well-known RS index - the normalized difference vegetation 

index was selected for the test (Equations 4). The average pixel 

values of the bands from 59–65 (640.7–669.3 nm, respectively) 

were assumed to represent the R band, and the average value of 

the bands from 103–109 (850.4–879 nm, respectively) were 
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assumed to represent the NIR band. The above band ranges 

corresponded to band 4 (640–670 nm) and 5 (850–880 nm) of 

the Landsat 8 Operational Land Imager (OLI). Figure 6 shows 

the relationship of the mean NDVI vs. NTII and selected two 

types of LC/LU (‘Grass healthy’ and ‘Trees’). It appears that the 

type of relationship depends on the LC/LU class. For the class 

‘Tree’, NDVI steadily increased with an increase in the value of 

the NTII, and less so for the ‘Grass healthy’ class. NDVI was 

approximately higher by 0.15 for the lowest vs. the highest 

values of the NTII. This is an important finding that may be 

used to improve the accuracy of classification of RS imagery 

using other types of spectral indices. 
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Figure 5. Mean NDVI vs. NTII for ‘Grass healthy’ and ‘Trees’ 

classes 

 

5. CONCLUSIONS 

Our investigations of the relationship of the pixel reflectance to 

the NTII, wavelength and selected LC/LU classes, and also the 

relationship between NDVI and the NTII allow for a few 

concluding statements.  

1. The inclusion of the NTII into a processing chain of 

ISD has the potential to improve the accuracy of the 

classification of RS images. 

2. The NTII of areas in shadows cast by clouds can also 

be estimated, although a procedure for doing so has yet to 

be proposed. It is anticipated that such a procedure would 

play an important role in improving the accuracy of the RS 

investigations. 

3. Our study confirms the best practice method for 

choosing training samples which is proposed in (Richter, 

1998). According to this method the selected LC samples 

should also have similar solar irradiation conditions. 

There are a number of limitations of the present study. Despite 

these, the achieved results justify further studies on the 

relationship between solar irradiation and the outcomes of ISD-

based studies. 
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