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ABSTRACT: 

 
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a 
Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 
and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult 
to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori 
estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose 
local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field 

which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the 
West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and 
qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was 
successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently 
led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood 
model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied 
on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs. 
 

 

1. INTRODUCTION 
 
DSMs performs an important role in various applications such as:  
planning; 3D urban city maps; natural disaster management (e.g. 
flooding, earthquake, landslide); civilian emergencies; military 
activities; airport management; and, geographical analysis, such 
as crime and hazards (Saeedi and Zwick 2008). Due to an 

increase in the sources of DSMs, their generation has led to a 
focus on merging datasets to produces a single one incorporating 
the data from multiple sources. Different terms have been used to 
indicate the merging such as fusion, combination, integration and 
synergy. These all can be considered to be a synonym for 
merging (Papasaika-Hanusch, 2012). 
 
Data merging has been studied by different researchers. For 
instance, it can be used, potentially, to identify the highest quality 

data for an area, as well as to address problems of data volume. 
Data merging is also important as it fills the gaps and voids 
produced while constructing the original DEMs.  The obvious 
solution for merging DEMs is to average tiles or strips from 
DEMs of the same area, and to produce a seamless DSM (Reuter, 
Strobl and Mehl, 2011), but this will not reflect the original data 
quality, because it gives the same weight to all data.  
 

Data merging has been shown to be important for increasing data 
quality Podobnikar (2007), Lee et al. (2005), Fuss (2013), 
Papasaika et al. (2009), and Dowman (2004). Wegmüller et al. 
(2010), focussed on the value of DSM merging to fill gaps. 
Hosford et al. (2003) showed an approach for enhancing DSMs 
through a merging operation based on a geostatistical approach 
(i.e. one capable of estimating a σ value).  
 

Papasaika et al. (2009) used merging to solve the problem of poor 
image matching technique by incorporating extra data sources. 

Schultz et al. (1999) used merging for image mosaicking using 
different data sources (SRTM SAR-X, ERS SAR tandem data).  
 
The purpose of this research was to increase DSM accuracy, 
based on an area’s morphological characteristics. Two pairs of 
satellite images have been used in this research, first the DSMs 
have been produced, and later they have been merged using both 

Maximum Likelihood and Bayesian approaches. Later the results 
have been evaluated by using check points measured in the field. 
 
The approach that has been suggested in this research is based on 
Bayes rule which requires incorporation of a priori data. The 
result has been compared with those achieved using the 
Maximum Likelihood approach. This account is structured to 
discuss: Bayesian inference in section 2; the test site in section 3; 
; the DSM formation model is in section 4; methodology in 

section 5; results and analyses in section 6; and,  finally, the 
conclusion is given in section 06.  
 

2. BAYESIAN INFERENCE 
 
Bayesian statistics are based on Bayes Rule, which is, in turn, 
based on determining the a posteriori probability 𝑓(𝛳|𝑋), 
utilizing the data that is obtained from experiment, represented in 
the form of a probability distribution 𝑓(𝑋|𝛳). This probability 

distribution, 𝑓(𝑋|𝛳), is the so-called likelihood and represents 

the measured data 𝑋 = 𝑥1 , 𝑥2 ,… . , 𝑥𝑛, represented by random 

variable, given the vector of required parameters 𝛳, and values 

based on 𝛳 expressed through the a priori probability and the 

normalising constant (sometimes called marginal likelihood or 
evidence, Gelman et al., 2004). Bayesian inference is one of the 
applications of Bayesian statistics. It can be used to infer 

information of interest from observations, providing data 
concerning undetected quantities. In the Bayesian approach, 
usually, the probability statement is used to estimate parameters 
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for the unobserved data through a process called Bayesian 

inference.  The values used in Bayesian approaches are random 
variables and provide uncertainties as output, represented as 
probability expressions. Bayesian inference encompass statistical 
inference methods where observations are utilized to determine 
the probability that assumptions are likely to be true, or to revise 
an already determined probability. In the applied field, Bayesian 
inference uses a priori probability calculated from the likelihood 
of certain assumptions regarding the observations imported into 

a computation or process. 
 
Bayesian inference can be summarized as using a model which 
is constructed based on Bayes’ Rule, and the obtained data 
represented by a probability form which is called the a posteriori 
probability distribution. The model used in Bayesian inference 
should effectively reflect the condition from which information 
is to be inferred. Bayesian inference is represented by 
constructing a model that adequately represents the situation 

from which information is to be inferred. The constructed model 
is based on Bayes’ Rule in which the results are represented by 
probability and called the a posteriori probability distribution. 
The elements used in Bayesian inference are based on the 
likelihood and a priori probability. The likelihood is arises by 
fitting a probability to the data in the experiment, while the a 
priori probability refers to subjective belief about the situation 
before that data gathering (Gelman et al., 2004). The major 

features of Bayesian inference that have led it to becoming a 
focus for researchers can be specified as: using the probability of 
the parameters to measure uncertainty instantaneously; handling 
any number of parameters; and, the applicability of joint 
probability density functions (Gelman et al., 2004). 
 
According to the literature, Bayesian approaches have been 
applied in remote sensing, successfully, to fuse and segment 

images (Mascarenhas, Banon and Candeias, 1992; Zaniboni and 
Mascarenhas, 1998; Punska, 1999; Mohammad-Djafari, 2003; 
Shi and Manduchi, 2003; Feron and Mohammad-Djafari, 2004; 
Ge, Wang and Zhang, 2007; Gheta, Heizmann and Beyerer, 
2008; Zhang, 2010) but no study has been found relating to their 
use in merging or fusing digital surface models. The common 
approach to fusing DSMs is based on using a weighted average, 
after assigning weights to the DSMs’ points based on checking 

their fidelity or performing a “DSM accuracy assessment” by 
calculating some statistical measurements (i.e. RMSE).  
 

3. TEST SITE  
 
For the test, two sources of satellite images have been acquired 
with the specifications as shown in the Table 1 (the first source 
was from the Worldview-1 (WV-1) sensor from the Digital 
Globe organization). As shown in Table 1 the time gap between 

the satellite imagery is calculated to be around 14 months. 
However it has been assumed, in this research, that no changes 
have arisen within the time period, therefore the merging in this 
research does not consider any multitemporal effect. This 
assumption has been made in order to focus on the effect of the 
merging using a Bayesian approach. 
 

Image  ID Acquisition 
Date 

Image Type Band 
Pan/MS 

Res. 
GSD(m) 

WV-1 image1 24/05/2012 
11:42:49.42 

Panchromatic 1/- 0.5 

WV-1 image2 24/05/2012 
11:43:28.78 

Panchromatic 1/- 0.5 

Pleiades image1 09/07/2013 
11:35:44.1 

Pansharpened 1/4 0.5 

Pleiades image2 09/07/2013 
11:36:25.8 

Pansharpened 1/4 0.5 

Table 1. Characteristics of the used satellite imageries 

The test area used to merge the DSMs is located in Glasgow, 

United Kingdom, covering 10km2, Figure 1. The test area 
coordinates were on the Universal Transverse Mercator (UTM) 
projection, longitudinal zone 30 ‘North’ using the WGS84 figure 
of the Earth for both the vertical and horizontal datum. The area 
had coordinates, bottom left corner (417820 mE, 6191335 mN) 
and upper right (420527 mE, 6195090 mN). 
 
The data have been processed and rectified for DSM production 

using Socet GXP 4.1 software, with the aid of GCPs. Using 
SOCET-GXP, the resolution of the DSMs was 1m. It is 
recommend by the SOCET GXP provider that the orthoimagery 
resolution be higher than the GSD of the DSM (Zhang and Smith, 
2010). 
 

 
(a) Pleiades Satellite imagery 

 
(b) WV-1 satellite imagery 

 
(c) DSM produced form 

Pleiades 

 
(d) DSM produced form WV-1 

Figure 1. Study area and study data used in merging DSMs 

 

4. DSM FORMATION AND MERGING MODEL 

 
It is essential to construct a model that links the available DSM 
to the true underlying DSM; this process is important and must 
be executed earlier than the merging operation using a Maximum 
Likelihood Estimate and a maximum a posteriori probability. 
Due to the errors in the DSMs produced, such as blunders, 
systematic and random errors arising from the image matching 
and other techniques the DSM does not typify the surface 
perfectly.   
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The blunders and systematic errors can be handled, but for the 

random errors this is not possible. Therefore the underlying DSM 
contained errors embedded in it. Equation 1, which can also be 
referred to as the forward model, is used to relate the true DSM, 
referred to as  DSM̅̅ ̅̅ ̅̅ ̅, to that obtained from satellite imagery 

technique (DSM): 

Z(x,y)       =    Z̅(x,y)      
+ ε(x,y) (1) 

Where: Z is the generated height of the DSM at location x,y, 

 Z̅ is the elevation of true underlying DSM̅̅ ̅̅̅ at location x,y, and, 

 ε is the height error in each DSM at location x,y. 

 
Merging DSMs can be considered as an ill-posed problem. 

According to Hadamard (1902), cited via Beyerer et al.(2011) a 
problem is considered to be ill-posed in the following cases: if a 
solution  is not unique; the problem does not have solution; or, 
the result can  become significantly different following a small 
change in the input data.  
 
Due to the intrinsic random error in the DSM, the result obtained 
from the merging is not unique and therefore the merging 

problem is considered an ill-posed problem. The processing 
model used arises from considering the combination of the actual 

digital surface model values, represented by DSM̅̅ ̅̅̅, and noise, 

through a simple transformation from the measured noisy digital 

surface model, represented by DSM, to the DSM̅̅ ̅̅̅, at each point in 

the model. The model for generating the data, developed from 
equation 1, is shown in equation 2, 

 

(

 
 

DSM1(x,y)

:

:

:

DSMk(x,y))

 
 
= DSM̅̅ ̅̅̅(x,y) +

(

 
 

ε1(x,y)

:

:

:

εk(x,y))

 
 
   ∶ 𝑘 > 0 (2) 

 
In order to obtain the required DSM the above model is used to 
form the inverse model.  
 
The measured DSMs are referred to as DSM1 to DSMk, while the 

underlying real or latent DSM values are represented by DSM̅̅ ̅̅̅ and  

the errors at each location in the DSM are represented by 

(ε
1
) to (ε

k
). 

 

5. METHODODLOGY 
 
The DSM obtained from the merging is considered to be more 
informative and more accurate than the original DSMs used in 
the merging. Two approaches for the merging which are 

Maximum Likelihood (the weighted average approaches) and 
Bayesian approaches are discussed in this section. For both 
approaches, first quality assessment has been performed to find 
the accuracy of each DSM. Then later the Maximum Likelihood 
merging was executed. Regarding the Bayesian merging in 
addition to the quality assessment the a priori estimation is 
determined in the probability form.  
 

5.1 Digital Surface Model (DSM) Quality Assessment 
 
To start the merging process it is necessary to find out the quality 
of each digital surface model. DSM quality is an intensely 
researched topic commencing about 40 years ago, in 1972, led by 
Makarovic (Li, 1990), in The Netherlands. The quality of the 
DSM is based on measuring the error in DSM heights. 
 

There are many factors affecting the accuracy of a DSM, 

according to Chen and Yue (2010), Li (1992) and Papasaika-
Hanusch (2012), such as: 
 

 distortion inherent in the sensor; 

 the source data’s attributes such as density and spread; 

 surface or terrain features such as relief, land-cover, and 
texture;  

 the mathematical approach that has been implemented to 

produce the DSM from the data source or the interpolation 
methods used; and,  

 techniques used in map-digitization or field surveying. 
 

The quality index that has been used foremost in this study to 

represent the quality of DSMs is a single RMSE value per terrain 
model, equation 3, based on using the measured ground control 
points. In addition to assuming the errors are distributed 
uniformly, it has been assumed the images are fully registered; 
this assumption arises from the situation where both DSMs are 
produced with the same grid spacing using the same software, 
same technique, and similar resolution satellite images. The only 
differences are sensor source and acquisition angle. These two 

factors (source and acquisition angle) cause the created DSMs to 
be different due to the image matching technique, thus identical 
features appear different in their respective DSMs, 

where: ∆ℎ𝑖 is the difference between the checkpoint measured by 

GNSS and that obtained elevation from the DSM - i.e. the ‘error’ 
(or discrepancy); and, n is number of measurements or 
checkpoints. 
 
Regarding the errors, they are assumed to be random variables 
that are normally distributed. This assumption has been checked 

by testing the histogram normality using the q-q plot as shown in 
Figure 2. 

 

 

  
histograms discrepancy(m); 

Pleiades vs. CP 

histograms discrepancy(m); 

WorldView-1 vs. CP 

  
q-q plot discrepancy(m); Pleiades 

vs. CP 

q-q plot discrepancy(m);WV-

1vs. CP 

Figure 2. Original DSMs (Pleiades and WV-1) error distribution 
histograms and q-q plot against RTK check points. 
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 (3) 
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5.2 Merging Using Maximum Likelihood Method  

A Maximum Likelihood method is considered the traditional 
method for estimating the results using noisy input data, is also 
called the weighted average, and is based on the assumption that 
noise is normally distributed within the data. The Maximum 

Likelihood method is based on maximizing the probability 
associated with the estimated value of a pixel in the merged 
DSM; that is the error between the elevations in the input pixel 
(DSM̅̅ ̅̅ ̅̅

(x,y)) and the corresponding estimated pixel (DSMk(x,y)) is 

required to be minimized.  
 

 
𝑝(𝑧1|𝜃) =

1

𝜎1√2𝜋
𝑒
(𝑍1−𝑧)

2

2𝜎1
2

 ; 

 𝑝(𝑧2|𝜃) =
1

𝜎2√2𝜋
𝑒
(𝑍2−𝑧)

2

2𝜎2
2

 

(4) 

 
The estimated value of z is obtained by maximizing the 
likelihood function equation with respect to z (Mittelhammer, 
2013), which leads to: 

  

𝑧𝑀̅𝐿𝐸 = argmax
z
𝑝(𝑧1, 𝑧2|𝜃) =

1

𝜎1√2𝜋
𝑒
(𝑍1−𝑧)

2

2𝜎1
2
 .

1

𝜎2√2𝜋
𝑒
(𝑍2−𝑧)

2

2𝜎2
2

 
(5) 

 
where:  e is: is the exponential function  
 σ is: is the standard deviation which is representing the 

Digital Surface Model quality, and, 

 𝑧 ̅𝑀𝐿𝐸: is the value of the merged elevation using 

Maximum Likelihood.  
 
Equation 5 yields Equation 6, after it is simplified and maximized 

with respect to z, in order to get the Maximum Likelihood 
estimate for z. This method requires the variances to be known 
for each measurement, which in this case is represented by the 
square value of the quality (using RMSE in this situation) of each 
digital surface model. the detailed derivation of this equation is 
summarized in Sadeq, 2015. 
 

 𝑧𝑀̅𝐿𝐸 = [

𝑧1
𝜎1
2 +

𝑧2
𝜎2
2

1
𝜎1
2 +

1
𝜎2
2

] (6) 

 
In other words, when the likelihood function and the observations 

z (i.e. z1, z2) are given, the estimated value is referred to as 𝑧̅𝑀𝐿𝐸 . 

The model can be extended to cover more than two sensors, 
which is the case if there is more than one set of measurements: 
 

 𝑧𝑀̅𝐿𝐸 = [

𝑧1
𝜎1
2 +

𝑧2
𝜎2
2 +

𝑧2
𝜎3
2 +⋯

1
𝜎1
2 +

1
𝜎2
2 +

1
𝜎3
2 +⋯ 

] (7) 

 

 
5.3 Merging Using Bayesian Approach 

The Maximum Likelihood approach can be considered to deal 

with each pixel individually and does not take into consideration 
spatial correlation in the fused images’ pixels. For that reason the 
DSM resulting from the fusion does not consider natural 
characteristics, such as smoothness, or other representations of 
the natural ground (Kotwal and Chaudhuri, 2013). So, in order to 
overcome the spatial correlation problem, it was necessary to 
introduce an a priori value which satisfactorily transformed the 
Maximum Likelihood value into a maximum a posteriori value, 

and transformed the problem from an ill-posed one into a well-
posed one, by introducing an a priori value into the solution of 

equation 2, which leads to the merged digital surface model 

(Beyerer et al., 2011). 
In this section the Bayesian approach is used to invert the forward 
model equation 1; this model is used to express the digital surface 
model formation, blended with uncertainty, while incorporating 
a priori knowledge about the digital surface model (i.e. its 
morphological properties). The most important benefit in a 
Bayesian approach and which does not exist in the other methods, 
is that the effect of noise is reduced by using a suitable a priori 

value. As already mentioned, it is assumed the errors are random 
and they can be represented by a Gaussian distribution with mean 
equal to elevation of the used DSM and variance numerically 
linked to the uncertainty in the digital surface model, measured 
by evaluating the quality, using checkpoints, and then blunder is 
detected and eliminated. 
 
According to the Bayesian equation, the merging is based on 
multiplying the likelihood by the a priori elevation; the 

likelihood is based on maximizing the probability. Recalling that 
the Bayesian rule, used to get the a posteriori probability, is 
represented by: 
 

𝑝(𝜃|𝑧) =
𝑝(𝑧|𝜃)𝑝(𝜃)

𝑝(𝑧)
=
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟
 (8) 

 
then, recalling equation 2, and assuming that the sensor error is 

normally distributed with mean z and variance σ2
, 𝑁(𝑧, σ2) 

(which represents the quality of the digital surface model) if there 
are two sensors: 
 

𝑧1 = 𝑧 + 𝜀1 , 𝜀1~𝑁(𝑧1, σ1
2) (9) 

𝑧2 = 𝑧 + 𝜀2 , 𝜀2~𝑁(𝑧2, σ2
2) (10) 

 
The elevations predicted through maximizing entropy have 
associated probabilities. Suppose that the elevation error is 
normally distributed, that the mean error is equal to mean 

elevation, which is so in this case is (𝑧1 , 𝑜𝑟 𝑧2), then the estimated 

a priori probability of the elevation, from (DSMk(x,y)), can be 

based on a smoothed surface. This smoothing can be achieved by 
maximizing local entropy; three smoothed data sets are produced, 
based on a 3x3, a 5x5 and a 9x9 window respectively. For the 

two models being considered here, i.e. (DSMk(x,y)) where k = 1 

or k = 2. The Bayesian approach can be simplified to include only 
the likelihood and a priori data, and that 𝑝(𝑧), the normalization 

factor, can be eliminated since the situation is not dealing with 
finding the absolute value of the probability. Assuming there are 
only two sensors, this results in: 
 

 

𝑧𝑀̂𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑧|𝑧1, 𝑧2) 
 

= (𝑧|𝑧1, 𝑧2)~𝑒
−(
(𝑧1−𝑧)

2

2𝜎12
 +  
 (𝑧2−𝑧)

2

2𝜎22
+  
 (𝑧1𝑝−𝑧)

2

2𝜎12
+  
 (𝑧2𝑝−𝑧)

2

2𝜎22
)
 

(11) 

Simplifying the equation and minimizing the result by taking the 
log of equation 11, the result of the Maximum A Posteriori 
(probability) (or MAP) which represents the merged digital 
surface models can be obtained from the following expression: 
 

 𝑧̂𝑀𝐴𝑃 = [

𝑧1
𝜎1
2 +

𝑧2
𝜎2
2 +

𝑧1𝑝

𝜎1
2 +

𝑧2𝑝

𝜎2
2

1

𝜎1
2 +

1

𝜎2
2 +

1

𝜎1
2 +

1

𝜎2
2

] (12) 

 

In the case of merging more than two sensors, use the result of 
merging the two data sets as obtained from equation12, to give a 
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priori probability of the elevation, and then use the third data set 

(z3) in its original form, with the merged data set (ZMAP_old) in a 
weighted average operation, as shown in equation 13: 

 𝑧̂𝑀𝐴𝑃_𝑛𝑒𝑤 = [

𝑧3
𝜎3
2 +

𝑧𝑀𝐴𝑃_𝑜𝑙𝑑
𝜎𝑀𝐴𝑃_𝑜𝑙𝑑

2

1

𝜎3
2 +

1

𝜎𝑀𝐴𝑃_𝑜𝑙𝑑
2

] (13) 

It is important to determine the quality of the a priori elevation, 
by using the below equation as shown by (Weng, 2002) : 
 

 𝜎𝑀𝐴𝑃_𝑜𝑙𝑑
2 =

𝜎1
2 + 𝜎2

2

𝜎1
2𝜎2

2  (14) 

 
The above mentioned steps can be summarized through the flow 
chart blow that shows the steps of merging DSMs based on 

Bayesian approaches 
 

 
Figure 3.  Flow chart for DSM merging process using 

Bayesian Approaches. 
 

5.4 Estimating the a priori using Maximum Entropy 

The assumption that is made when constructing the a priori value 

is to build on the assumption that constructed building surfaces 
are smooth and have low roughness. This assumption can be 
quantified by using maximum entropy.  
 
It is clear that entropy is representing the randomness in elevation 
variations which, consequently, can be employed to characterize 
the digital surface model. These characteristics can be used to 
manifest the representation of surface roughness, by assuming 

that the surface is smooth when the entropy is at the maximum 
and it is rough (or not smooth) when the entropy is lowest. Based 
on this assumption one can try to maximize the entropy by 
changing the value of the middle of the window.  
 
Maximizing the entropy by assigning different values will give 
an elevation that can be considered as the value of the a priori 
elevation. 

 
According to the earlier discussion about entropy and how 
entropy can be used to represent roughness, and as illustrated in 
Figure 5, maximum entropy is obtained when the probabilities 
are similar, and the uncertainty is high between the probabilities, 
i.e. the elevations are close to each other and the surface is 
smooth. 
 

 

 

 

Figure 4.  DSM shows different value of elevations used to 
represent the entropy (a) the entropy is low since the 

randomness in the elevations is high (b) the entropy is high 
since the variance in the elevation is low. 

 
The group of probabilities pij from p11  to pMN in a specific 

window size MN, are represented by the value Hf. The equation 

15 represents a one dimension signal, but it can be transformed 
to apply to a window: 

 𝐻𝑓 =∑∑(𝑝𝑖𝑗

𝑁

𝑗=1

𝑀

𝑖=1

∗ 𝑙𝑜𝑔𝑝𝑖𝑗 )   (15) 

where: 

    𝑝𝑖𝑗 = 𝑓(𝑥, 𝑦)/∑∑𝑓(𝑖, 𝑗) 

𝑁

𝑗=1

𝑀

𝑖=1

 (16) 

The values of the heights have been transformed into 
probabilities within the specific window, MN. At each element 
of the window, the height probability has been evaluated by 

dividing each pixel value, f, by the total values of elevation 
within the specific window in order to find pij. 
 
In order to determine the a priori elevation value, the window is 
generated each time the maximum entropy is determined for a 
specific elevation. The model that is used for determining the 
entropy is illustrated in Equation 17. 
 

 𝜃 = 𝑎𝑟𝑔max
𝜃
∏𝐻𝑓(𝑥)   (17) 

 

𝜃̂ in equation represents the maximum entropy. 

 

6. RESULTS, ANALYSES AND DISCUSSION 
 
This section includes the evaluation of each created and merged 
DSM that has been generated from optical satellite imagery 
implementing the developed models. For evaluation purposes 31 

check points have been used which were acquired by differential 
GNSS observations and are considered to be the ‘true’ ground 
elevations. Both quantitative and qualitative analyses have been 
used in this evaluation.  
 
The merged DSMs can be classified into two types: Maximum 
Likelihood (i.e. weighted average) and Bayesian Merging. 
 

Within Bayesian Merging there were three groups derived from 
the implemented window size used in estimating the a priori 
probability of elevation, based on maximising local entropy, 
namely 3x3, 5x5 and 7x7 windows. Each of them has been 
evaluated based on two different iteration loops in a ± 0.1m range 
and a± 0.25m range, using a 0.01m increment. 
 
6.1  Statistical Assessment 

The statistical tests that have been used in the merged DSM 
validation have been applied after eliminating blunders. 
Empirical equations, and statistical tests have been used in the 
quantitative evaluation , such as (RMSE) and ‘determination 

coefficient’, r2 (Legates and McCabe, 1999).  

DSM1 DSM2 

DSM1 Quality 

Assessment 

Blunder detection 

DSM2 Quality 

Assessment 

Blunder detection 

Estimating prior 

elevation from DSM1 

Estimating prior 

elevation from DSM2 

Merging DSMs using 
Proposed Bayesian 

Approach 

Assessing quality of the 
merged DSM 
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It can be noticed that the errors (discrepancies), which are 

represented by RMSE, for the Maximum Likelihood case was 
0.375m while for all the Bayesian approaches was larger, i.e. 
being 0.392m, or greater. 
 
During the quality assessment for the digital surface models 
produced by the Bayesian approach it is noticeable that the 
RMSE of the merged digital surface model with range ±0.1m is 
smaller than the RMSE of the merged digital surface model with 

the ±0.25m range for both the a priori probability of elevation 
obtained from the 3x3 and 5x5 windows, while the RMSE when 
the 7x7 window is used to obtain the a priori probability of 
elevation with the ±0.25m range was better than that achieved 
with ±0.1m range. The σ of error values were almost the same in 
all cases (i.e. all size windows and all increments for estimating 
a priori elevation). 
 
The coefficient r2 has been used in order to test the correlation 

between the DSMs’ elevations and GCPs’ elevations. From the 
previous section it can be seen that the equation 12, represents 
the merged model using a Bayesian approach in the case when 
the measurements was limited to two digital surface models only.  
 

  

 
 

  

 

 

Figure 5.  Comparison of the correlation and scatter plot for the 
input data and merging results using Maximum Likelihood and 
Bayesian techniques against checkpoints (CPs). First row is for 

Pleiades vs. Checkpoints, second row is for WV-1 vs. 
Checkpoints, third row is for Maximum Likelihood vs. 

Checkpoints, and fourth row is for Bayesian merging - range 

±0.25m window 3x3 vs. Checkpoints. 
 
It should be noted that the standard deviation of the error (or σ of 
discrepancies), which can be considered to be an unbiased 
representation of error, has been reduced in all the merged DSMs 

to be better than that for the original data. Initially it was 0.359m 

(Pleiades) and 0.320m (WorldView-1) and the merging has led it 
to be 0.306m in the worst case. 
 
The error illustrated in Figure 5, shows the differences between 
the DSMs either from the original or a merged DSM and the 
‘true’ values. This has been measured by taking the difference 
from of the GCP elevations and the aforementioned DSMs at 
each checkpoint. 

 
The Bayesian approach has considerable influence on imposing 
normality on the error distribution as can be seen from the plots 
of each type regardless of the window size and the iteration range 
used in looping for estimating the a priori probability of the 
elevation value. An analysis of the discrepancy scatter plots 
Figure 5, as recommended by Rusling and Kumosinski (1996) 
shows that all the values are randomly distributed which further 
validates the linear relationship between all sets of interpolated 

heights and their checkpoint values.  
 
6.2 DSM Qualitative Assessment 

In addition to the quantitative assessment, a qualitative 

assessment has been implemented. Different analyses were 
implemented, using visual inspection on generated profiles and 
slope maps from the DSMs.  
 
6.2.1 Height comparison: Figure 6 shows the profiles that 
were produced at the merging stage, against the original profiles. 
The weighted average (Maximum Likelihood) approach 
enhances the DSM by removing irregularities in the underlying 

DSM and shows, graphically, that the WorldView-1 DSM has, 
through the weighting process based on the DSM’s quality, more 
influence on the underlying DSM than does Pleiades. 
 

 
Figure 6.  Profile for height assessment. 

 
Due to variations in satellite geometry, it can be noticed from 
Figure 6 that there is a misregistration in the DSMs and 
consequently in the produced profile due to weak satellite 
geometry (Teo et al., 2010). 
 
The merged digital surface model has a smoother surface than the 
original digital surface model. The Bayesian approach is able to 

remove the spikes from the building, and has more influence on 
the resulting digital surface model than Maximum Likelihood, 
especially when the range used to infer an a priori probability of 
elevation has been increased to ±0.25m instead of ±0.1m.  
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6.2.2 Slope Analysis: Further DSM assessment has been 

achieved by producing a slope map. In the analysis of the 
produced maps, Figure 7, it has been shown that the Bayesian 
approach has an active affect on smoothing the flat surfaces 
during the merging process. This can support the assumption that 
has been made during estimating the a priori probability of 
elevation used in the Bayesian approach.  
 

 
(a) Pleiades DSM 

 
(b)Bayesian merged DSM 

Figure 7.  3D view showing the effect of merging over a flat 
surfaced structure. 

 
For further detailed qualitative validation, different slope maps 

have been produced either for the original DSMs or for the 
merged DSMs as shown in Figure 8, in order to find out the 
change in the surface slope between each stage. 
 

 
(a) slope map for DSM from 

Pleiades 

 
(b) slope map for DSM 

produced with simulation 

range ±0.25m and window 

3x3 

Slope(o)

 
Figure 8.  Slope map analysis for merged DSMs, the white 
symbolization shows the effect of merging on removing the slope. 

 
For further detailed analysis of the DSM’s slope map, Table 2 
shows the statistics analysis for each slope map within the study 
area represented by the arithmetic mean and standard deviations 
of the slope values across the whole study.  
 

 

Source of the DSM 

Arithmetic 

mean of 
slope (o) 

σ of 

slope (o) 

WorldView-1 satellite imagery(A) 25.402 19.919 

Pleiades satellite imagery(B) 27.740 21.199 

Merging (A and B) with Maximum 

Likelihood 
25.292 19.495 

Merging (A and B) with Bayesian range 
±0.1m and 3x3window 

25.279 19.628 

Merging (A and B) with Bayesian 
simulation range ±0.25m and 3x3window 

25.220 19.515 

Merging (A and B) with Bayesian 
simulation range ±0.1m and 5x5window 

25.196 19.725 

Merging (A and B) with Bayesian 
simulation range ±0.25m and 5x5window 

25.037 19.617 

Merging (A and B) with Bayesian 
simulation range ±0.1m and 7x7window 

25.135 19.778 

Merging (A and B) with Bayesian 
simulation range ±0.25m and 7x7window 

25.892 19.705 

Table 2.  Merged and original slope map statistical analysis. 
 

In the slope map analysis, the average slope of the merged DSMs 

using the Bayesian approaches (i.e. all used window sizes and 
variances) is less than that for the slopes of the merged DSM 
achieved using the Maximum Likelihood approach. Moreover, 
the arithmetic mean values decrease with increasing the window 
size or with increasing the range value, because with a higher 
increment value, the patch that is used to infer an a priori 
probability of elevation has become smoother. On the other hand, 
the standard deviations of slope across the whole study area for 

the merged DSMs are less than the original DSMs used in the 
merging. The standard deviation of the merged DSMs using the 
Maximum Likelihood method is less than the DSMs using 
Bayesian approaches. Moreover, the standard deviation of slope 
across the whole study area rose with increased window size, and 
for each window size the standard deviation is increased with 
increasing the range (e.g. with simulation range of ±0.25m rather 
than ±0.1m). 
 

7. CONCLUSION 
 
In this research a statistical approach, based on probabilistic 
methods, has been investigated for merging DSMs and enhancing 
building footprints. Due to increasing the sources for DSM 
construction, merging DSMs can reduce data redundancy while 
improving the quality of the data. The applied statistical tests 
have shown that merging using a Bayesian method can provide 

DSM results similar to those achieved using a Maximum 
Likelihood method for merging, and it can be used for its 
intended purpose. It was hoped to obtain a DSM that had better 
characteristics than the original. Noticeable improvements in 
accuracy cannot, theoretically, be achieved, and purely on the 
positional accuracy basis the unmerged WorldView-1 DSM 
offers the greatest accuracy, but a more complete model can be 
achieved, and an approach is offered which can be used to detect 

blunders in a contributing DSM. Also the Bayesian approach has 
helped to smooth the surface of the generated structures so it may 
represent the real surfaces found in urban areas better. It can be 
acknowledged that the effect of misregistration has not been 
treated and the result would be more accurate if this was 
addressed. But the more complete DSM achieved is likely to 
assist greatly in a variety of applications, when this problem is 
addressed. 
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