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ABSTRACT: 
 
Estimation of forest aboveground biomass (AGB) is a critical challenge for understanding the global carbon cycle because it 
dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for 
estimating accurately forest canopy height, which has a direct relationship and can provide better understanding to the forest AGB. 
The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) is the first polar-
orbiting LiDAR instrument for global observations of Earth, and it has been widely used for extracting forest AGB with footprints of 
nominally 70m in diameter on the earth’s surface. However, the GLAS footprints are discrete geographically, and thus it has been 
restricted to produce the regional full coverage of forest AGB. To overcome the limit of discontinuity, the Hyper Spectral Imager 
(HSI) of HJ-1A with 115 bands was combined with GLAS waveforms to predict the regional forest AGB in the study. Corresponding 
with the field investigation in Wangqing of Changbai Mountain, China, the GLAS waveform metrics were derived and employed to 
establish the AGB model, which was used further for estimating the AGB within GLAS footprints. For HSI imagery, the Minimum 
Noise Fraction (MNF) method was used to decrease noise and reduce the dimensionality of spectral bands, and consequently the first 
three of MNF were able to offer almost 98% spectral information and qualified to regress with the GLAS estimated AGB.  
Afterwards, the support vector regression (SVR) method was employed in the study to establish the relationship between GLAS 
estimated AGB and three of HSI MNF (i.e. MNF1, MNF2 and MNF3), and accordingly the full covered regional forest AGB map 
was produced. The results showed that the adj.R2 and RMSE of SVR-AGB models were 0.75 and 4.68 t·hm-2 for broadleaf forests, 
0.73 and 5.39 t·hm-2 for coniferous forests and 0.71 and 6.15 t·hm-2 for mixed forests respectively. The full covered regional forest 
AGB map of the study area had 0.62 of accuracy and 11.11 t·hm-2 of RMSE. The study demonstrated that it holds great potential to 
achieve the full covered regional forest AGB distribution with higher accuracy by combing LiDAR data and hyperspectral imageries. 
 

                                                                 
* Yanqiu Xing: the corresponding author. 
 

 
 

1 INTRODUCTION 
 
Estimating and preserving the carbon stock in forests can help 
devise sequestration strategies and reduce greenhouse gas 
emissions(Zhang, 2014; Canadell, 2007; Miles, 2008). Forest 
aboveground biomass (AGB) has received more and more 
attention during the last decades due to its relevance to carbon 
cycle balancing and species diversity(Saatchi,2011a; Laurin, 
2014; Saatchi, 2011b). Therefore, accurate calculation of 
Forest AGB and their distribution is of great significance to 
research on carbon cycles and carbon stocks(Neigh, 2013). 
 
Light Detection and Ranging (LiDAR) has a unique capability 
for estimating forest structure parameters, especially forest 
vertical structure parameters. Airborne small-footprint LiDAR 
is considered the most accurate remote sensing technology for 
mapping forest AGB(Laurin, 2014; Zolkos, 2013), but its 
disadvantages such as expensive costs and complex data 
processing, limit its application on large-scale areas. On the 
other hand, space-borne LiDAR has a wide observation scope 
and can capture large-scale even global information without the 
limitation of time and weather(Asner, 2010; Drake, 2002). 
 

The Geoscience Laser Altimeter System (GLAS) onboard the 
Ice, Cloud, and land Elevation satellite (ICESat) launched on 
12 January 2003, a unique LiDAR instrument designed for 
continuous global observation of the earth(Zwally, 2002; Sun, 
2008). It is able to capture full waveform data consists of the 
first return waveform reflected by forests and the last return 
waveform reflected by the ground. Therefore, we can obtain 
vertical distribution information such as forest height through 
analysing the full waveform data. The GLAS waveform has 
been widely used to estimate forest structure parameters and 
forest AGB(Rosette, 2008; Pflugmacher, 2008; Xing, 2010; 
Lefsky, 2005; Enßle, 2014; Sun, 2008). Although the GLAS 
performs well in estimating forest structure parameters, but its 
sparse distribution is discontinuity which limits its application 
on large-scale areas alone. The combination of multiple sources 
of data is required to map large areas of forest AGB(Sawada, 
2015; Chi, 2015; Guo, 2010). In addition, GLAS waveform is 
sensitive to terrain slope due to its large footprint size, which 
causes overestimate of forest height and decreases forest AGB 
estimation accuracy.  
 
In this paper, in order to overcome the two problems, ICESat-
GLAS waveform metrics (W, I, TS) were combined with three 
MNF components of HJ-1A/HSI hyperspectral imageries to 
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estimate forest AGB based on Support Vector Regression 
(SVR) method in order to improve the forest AGB estimation 
accuracy and achieve the full covered regional forest AGB 
distribution.  
 

2 MATERIALS 
 
2.1 Study area 
 
The study area is within Wangqing forestry of Jilin province, 
China, and is located along the border between China and 
North Korea (43°05′N-43°40′N, 129°56′E-131°04′E) (see 
Figure 1). It belongs to Changbai mountain system, one of the 
most valuable reserves in China, and it is a rich gene pool of 
many plant species. The elevation ranges from 360m to 1477m, 
and the terrain slope generally ranges from 0° to 45°. The study 
area is dominated by cool temperate continental climate with 
four clearly defined seasons. The dominant species are Korean 
pine (Pinus koraiensis Siebold & Zucc.), Spruce (Picea 
asperata Mast.), Smelly pine (Abies nephrolepis (Trautv. ex 
Maxim.) Maxim.), Tilia (Tilia tuan Szyszyl.), Mongolian oak 
(Quercus mongolica Fisch. ex Ledeb.), Maple leaf (Betula 
costata Trautv.), Acer mono (Acer mono Maxim.), and Birch 
(Betula platyphylla Suk.). 
 

 
 

Figure 1. Study area and the location of sample points 
 

2.2 ICESat-GLAS waveform 
 
ICESat-GLAS carries three lasers in total, and each laser emits 
40 pulses of 1064 nm per second, resulting in an elliptical 
footprint of ~70m diameter on the surface of the earth, with 
each footprint separated by 172m(Schutz, 2005). GLAS totally 
offers fifteen kinds of products(Sun, 2008). In the study, 
release-31 of the GLA01 and GLA14 data were acquired 
through the National Snow and Ice Data Center (NSIDC) web-
site (http://nsidc.org/data/icesat/). The GLA01 data contains 
raw waveform data. For land surfaces, the waveform has 544 
bins with one bin represents 15cm. The GLA14 data does not 
contain waveform data, but includes information about the 
observation conditions and the latitude and longitude of 
footprints, etc. The two products are joined together by the 
record index of the GLAS footprints. 
 
Since GLAS waveforms was easily affected by clouds and 
system noise, cloud-contaminated and abnormal waveforms 
were removed before extracting waveform parameters by using 
the saturation-free flag (i_satNdx=0) and cloud-free flag 
(i_FRir_qaFlg=15) data extracted from GLA14 
product(Popescu, 2011). 

2.3 HJ-1A HSI imageries 
 
The Disaster and Environment Monitoring and Forecast 
constellation consists of two satellites (HJ-1A and HJ-1B), and 
was launched on September 6, 2008. HJ-1A is equipped with a 
Hyper Spectral Imager (HSI) with 50km swath and 100 m 
spatial resolution consisting of 115 bands with 4.32nm spectral 
resolution in the 0.45~ 0.95μm range. Four images of level-2 
data were acquired through the China Centre for Resources 
Satellite Data and Application web site and used for Forest 
AGB estimation (http://www.cresda.com/n16/index.html). 
 
2.4 Field inventory data 
 
The field data collection was carried out in September of 2006 
and 2007 in the study area and 183 circular plots of 500 m2 
along ICESat-GLAS flight track direction were randomly 
established. The description of field data was listed in Table 1. 
These plots consist of 101 broad-leaved forest, 38 coniferous 
forest and 44 mixed forest. In each plot, we recorded species 
and forest canopy density. Tree height and DBH (Diameter at 
Breast Height) were also measured with a DBH greater than 10 
cm. For trees with a DBH between 4cm and 10cm, we only 
recorded tree species, and we made no record of trees with a 
DBH less than 4 cm. In addition, the terrain slope and the 
number of trees were also recorded in each plot. Biomass of 
single trees in each plot was calculated using the polynomial 
function with DBH as the variable developed by Deo(Deo, 
2008). In the study, the sum of the single tree biomass divided 
by plot area was defined as the forest aboveground biomass of 
each plot. 
 

Sample parameters max min mean 
Forest height/m 35.00 8.70 22.90 
Forest canopy density 0.95 0.10 0.62 
DBH/cm 32.26 10.00 18.74 
Forest aboveground 
biomass/t·hm-2 

112.41 15.78 63.64 

 
Table.1 Description of field data 

 
3 METHOD 

 
3.1 Data processing 
 
3.1.1 ICESat-GLAS waveform processing and metrics 
extraction: The GLAS waveforms were smoothed by Gaussian 
filter to remove noise. The smoothed waveform was modelled 
with Gaussian components using the algorithm developed by 
Brenner et al(Brenner, 2003). The signal start and signal end 
were identified using the background noise threshold which 
was set to the mean background noise plus 4.5 times the 
background noise standard deviation(Lefsky, 2005).  
 
Generally, waveform extent (W) as shown in Figure 2 was 
defined as maximum forest height on a flat area. But the 
waveform was increased as the function of terrain slope and 
footprint size in mountain forests. To increase the accuracy of 
maximum forest height and forest AGB, the terrain slope 
parameter TS was extracted from the GLAS waveform based on 
an approach developed by Mahoney(Mahoney, 2014) in order 
to reduce the associated uncertainties, The equations are shown 
in Equation (1). 

atan( ); 4.689 0.759
gf m

m

W W
TS W A

D


           （1） 
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Where  TS =terrain slope 

       Wgf=the width of the Gaussian waveform corresponding     
               to ground return 
     Wm =the minimum width of the Gaussian waveform  
             caused by the duration of the emitted signal and  
             atmospheric attenuation 
    D =the diameter of the GLAS footprint 
   A =the GLAS waveform maximum amplitude.  
 

In this paper the forest canopy density was calculated for each 
footprint as the ratio of the forest canopy energy to the total 
energy of the GLAS waveform and the equation is shown in 

Equation (2). As shown in figure 2, the forest canopy energy 
was calculated by summing the reflected energy of forest 
canopy height bins of the GLAS waveform, and the total 
energy was computed by adding up the energy of the GLAS 
waveform from signal start to signal end.  
 

                             /vI E E                                              (2) 

 
Where   I = forest canopy density 
             Ev =the reflected energy of forest canopy height bins of  
                    the GLAS waveform 
            E =the total energy of GLAS waveform. 
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Figure 2. The GLAS waveform and GLAS parameters 

 
 

 
3.1.2 HJ-1A/HSI imageries processing and metrics 
extraction: The atmospheric corrections for the four images 
were performed using the FLAASH (Fast line-of-Sight 
Atmospheric Analysis of Spectral Hypercubus) algorithm, 
which is based on the MODTRAN4+ Radiative transfer model. 
The study area was classified into broadleaf forest, coniferous 
forest, mixed forest and non-forest areas by the supervised 
classification method with the help of forest inventory data. 
Because HSI hyperspectral image consists of 115 bands, there 
is strong data redundancy and high correlation between 
neighboring bands. In the study, the Minimum Noise Fraction 
(MNF) method was applied to decrease noise and reduce the 
dimensionality of spectral bands. The first three MNF 
components (i.e. MNF1, MNF2 and MNF3) contains almost 
98% of total information and satisfies research requirement and 
so they were used to do forest AGB estimation. Considering 
that the spatial resolution of GLAS data and HSI data are 
different, circle buffers of 70m in diameter were established on 
the HSI image with the coordinate of GLAS footprints as their 
center, and the mean value of pixels covered by circle buffers 
was defined as MNF value of the corresponding GLAS 
footprints. 
 
3.2 Regional forest AGB estimation combining GLAS 
waveform and HJ-1A/HSI imageries 
 
In the study, GLAS waveform and HSI image were combined 
to estimate forest AGB. Metrics (W, TS, I) derived from GLAS 
data and field AGB were used to develop the GLAS-AGB 
models by multiple regression method for different forest types 
in the study area. The GLAS-AGB models were then used to 
calculate forest AGB of the remaining GLAS footprints.  

 
The SVR (Support Vector Regression) method was applied to 
combine the GLAS metrics with HSI metrics to finish regional 
forest AGB estimation. SVR is based on statistical learning 
theory and the structural risk minimization principle. It 
performs well in approximating and generalizing. The basic 
principle of SVR is to map the data into a high dimensional 
feature space via a kernel function, after which a linear 
regression is performed in this feature space. The radial basis 
function is a normal kernel function as shown in Equation(3): 
 

               
2

( , ) exp( )
2

i
i

x x
K x x




                                (3) 

 
Where   = the width of the kernel function 
             xi=the centre of the kernel function 
             x =the dependent variable 

 
In the paper, we used the LIBSVM tools for the forest AGB 
estimation. To build the SVR-AGB model, all the forest AGB 
of GLAS footprints and the correlated three MNF components 
of HSI data were put into LIBSVM, and they were randomly 
divided into training and validation data to develop SVR-AGB 
models for three forest types. The SVR-AGB models were then 
used to calculate forest AGB of each pixel of HSI data and the 
AGB map of the entire study area was achieved. The flow chart 
of the forest AGB map process is shown in Figure 3. 
 
The adjusted coefficient of determination (adj.R2) was used to 
evaluate the goodness of fit for the model. The root mean 
square error (RMSE) was used to assess the error between the 
estimated AGB and field-observed AGB at the footprint level. 
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Figure 3. Flow chart of regional biomass estimation from 
GLAS, HJ-1A/HSI, and field data 

 
4 RESULTS AND DISCUSSION 

 
4.1 Biomass estimation from GLAS waveform parameters 
 
As shown in Figure 4, TS has a strong linear relationship with 
terrain slope (adj.R2=0.78, RMSE=4.74°). Therefore, TS can be 
used to correct the influence of terrain slope on GLAS 
waveform for further forest AGB estimation. 
 
As shown in table 2, when the under-story vegetation height 
was set as 2m, the accuracy was the highest (adj.R2=0.64, 
RMSE=0.13). Thus in this study, the GLAS parameter I 
extracted from the GLAS waveform when the under-story 

vegetation height was set as 2m was used to estimate forest 
AGB. 
 
 

 
 

Figure 4. Scatter plot of TS and terrain slope 
 
 

Under story vegetation 
height 

adj.R2 RMSE 

1m 0.52 0.21 
2m 0.64 0.13 
3m 0.60 0.20 

 
Table.2 Adj.R2 and RMSE value of GLAS forest canopy 

density model with different under story vegetation height  
 

 
 

Forest type parameters adj.R2 
RMSE 
(t·hm-2) 

N 

W 0.39 18.64 
W,TS 0.45 16.23 
W,I 0.53 11.92 

Broadleaf forest 

W,TS,I 0.65 10.21 

68 

W 0.36 20.25 
W,TS 0.53 16.61 
W,I 0.59 11.92 

Coniferous forest 

W,TS,I 0.66 11.86 

25 

W 0.46 19.56 
W,TS 0.52 15.19 
W,I 0.58 13.72 

Mixed forest 

W,TS,I 0.62 12.85 

29 

 
Table.3 Results of AGB estimation models with GLAS parameters 

 
 
 

Validation results 
Forest types Equation 

adj.R2 
RMSE 
(t·hm-2) 

Broadleaf forest 0.87 0.09 tan( ) 56.95 0.75B W D TS I        0.75 8.72 

Coniferous forest 0.65 0.12 tan( ) 55.41 7.36B W D TS I        0.77 8.38 

Mixed forest 1.17 0.14 tan( ) 49.73 5.23B W D TS I        0.76 7.60 

 
Table.4 Regression equations of AGB models of the three forest types 
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As shown in Table 3, when W and TS were considered in the 
regression analysis, adj.R2 significantly increased and RMSE 
significantly declined. For example, adj.R2 increased from 0.39 
to 0.45 in broadleaf forests, from 0.36 to 0.53 in coniferous 
forests and from 0.46 to 0.52 in mixed forests. RMSE declined 
from 18.64 t·hm-2 to 16.23 t·hm-2 in broadleaf forests, from 
20.25 t·hm-2 to 16.61 t·hm-2 in coniferous forests, and from 
19.56 t·hm-2 to 15.19 t·hm-2 in mixed forests, respectively. 
Additionally, from the Table 3, it can also be seen that the 
adj.R2 value of AGB models with W and I as independent 
variables of the three forest types significantly increased, 
demonstrating that forest AGB really has linear relationship 
with I. When all of the GLAS parameters (W, TS, I) were 
considered in the AGB models, the accuracy was the best. In 
this case, adj.R2 and RMSE values of the forest AGB model are 
0.65 and 10.21 t·hm-2 for broadleaf forests, 0.66 and 11.86 
t·hm-2 for coniferous forests and 0.62 and 12.85 t·hm-2 for 
mixed forests.  
 
The regression equations and the validation results of AGB 
models of the three forest types are shown in Table 4. The 
results showed that the forest AGB estimated from GLAS 
waveforms and the forest AGB calculated from forest inventory 
data has good consistency with adj.R2=0.75 for broadleaf forest, 
adj.R2=0.77 for coniferous forest and adj.R2=0.76 for mixed 
forest. Therefore, GLAS-AGB estimation models can be used 
to predict regional forest aboveground biomass combining with 
HJ-1A/HSI data in further study. 
 

4.2 Regional AGB estimates and validation 
 

The regional SVR-AGB models are shown in Table 5. It can be 
seen that the accuracy of broadleaf forest was higher than 
coniferous forest and mixed forest. The forest AGB of the study 
area was calculated using the SVR-AGB model pixel-by-pixel. 
The final results are shown in Figure 5, and it could be seen 
that the forest AGB of the study area ranges from 0 to 164 
t·hm-2. The highest forest AGB is located in the northern and 
southwestern part of the study area where evergreen trees are 
dominant. The southern and northeastern parts of the study area 
are dominant with larch whose leaves had become yellow or 
fallen, resulting in a lower AGB value. The regions of the study 
area with a forest AGB value of zero are mainly residential 
areas, roads and rivers.  

 
Even though the accuracy of forest AGB estimation was 
improved, there is also some bias between the predicted forest 
AGB and field forest AGB, and the reasons are various. As 
shown in Figure 5, the forest AGB increases as altitude 
increases and then declined when the altitude reached 700m. 
Large amounts of forest AGB were concentrated in the altitudes 
between 400m and 800m. Because the study area is dominated 
by a cool temperate continental climate, when the altitude 
reached 1000m, the temperature is only 3 , which is not ℃
suitable for plants, and there were only some small but old trees. 
The time of acquisition of the data in the study was different, 
which may also bring some negative influence on the results. 
 

 
 

Training result Testing result 
Forest type parameters 

adj.R2 
RMSE 
(t·hm-2) 

adj.R2 
RMSE 
(t·hm-2) 

Broadleaf forest MNF1,MNF2,MNF3 0.75 4.68 0.70 6.32 
Coniferous forest MNF1,MNF2,MNF3 0.73 5.39 0.67 10.25 

Mixed forest MNF1,MNF2,MNF3 0.71 6.15 0.63 12.34 
 

Table.5 Results of forest AGB models estimated with HJ-1A/HSI parameters 
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Figure 4. Map of Forest aboveground biomass                                 Figure 5. Forest aboveground biomass with different altitude 

 
 

5 CONCLUSION 
 

A method to estimate forest AGB of Wangqing forest was 
developed through combining ICESat-GLAS and HJ-1A/HSI. 

 
The results demonstrated that GLAS waveform plays an 
important role in linking field inventory data to HJ-1A/HSI 
data, because of the fact that the acquisition of field inventory 
data is both time-and resource consuming. GLAS waveform 
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records the interaction of laser beams with forest and ground 
which reflect the vertical structure of forest. Some GLAS 
parameters such as W, I, and TS can be used to develop a forest 
AGB model. TS has a strong relationship with terrain slope, 
and can be used to correct the influence of terrain slope on the 
GLAS waveform. The ratio I of the forest canopy energy to the 
total energy of GLAS waveform has the best correlation with 
forest canopy density when the under-story vegetation height 
was 2m. And the results showed that GLAS waveform 
parameters have the good relationship with AGB and the AGB 
equations for the three forest types can be used to obtain 
sample biomass data for regional AGB estimation using HJ-
1A/HSI images. 

 
GLAS parameters which reflecting forest vertical and 
horizontal structure are considered in the AGB model, and the 
accuracy of forest AGB model is improved, comparing with 
that alone using vertical structure or horizontal structure 
parameters.  
 
 From the results shown in Table 5, we can see that the 
combination of GLAS data and HJ-1A/HSI data is reasonable 
and promising for regional forest AGB estimation. Combining 
GLAS and HJ-1A/HSI data can improve the estimation 
accuracy of forest AGB and can complete regional forest AGB 
estimation. However, because of the spatial resolution of HJ-
1A/HSI data, the spatial distribution and the limitation number 
of GLAS footprints, the accuracy of the estimated forest AGB 
of the study area was not very high. In the future studies, some 
high spatial resolution and high spectral resolution image data 
can be considered to improve the accuracy. 
 

REFERENCES 
 

Asner G.P., 2010. High-resolution forest Carbon stocks and 
emissions in the Amazon. Proceedings of the National 
Academy of Sciences, 107(38): 11674-16738. 
 
Brenner A.C., 2003. Derivation of range and range 
distributions from laser pulse waveform analysis for surface 
elevations, roughness, slope, and vegetation heights. Algorithm 
Theoretical Basis Document, 4: 26-32. 
 
Canadell J.G., 2007. Contributions to accelerating atmospheric 
CO2 growth from economic activity, Carbon intensity, and 
efficiency of natural sinks. Proceedings of the National 
Academy of Sciences, 104(47): 11887-18866. 
 
Chi H., 2015. National forest aboveground biomass mapping 
from ICESat/GLAS data and modis imagery in China. Remote 
Sensing, 7(5): 5534-5564. 
 
Deo R.K.. 2008. Modelling and mapping of aboveground 
biomass and Carbon sequestration in the cool temperate forest 
of North-east China. Netherlands: International Institiute For 
Geo-information Science and earth observation enschede. 
 
Drake J.B., 2002. Sensitivity of large-footprint lidar to canopy 
structure and biomass in a neotropical rainforest. Remote 
Sensing of Environment, 81(2): 378-392. 
 
Enßle F., 2014. Accuracy of vegetation height and terrain 
elevation derived from ICESat/GLAS in forested areas. 
International Journal of Applied Earth Observation, 31: 37-44. 
 
Guo Z., 2010. Estimating forest aboveground biomass using 

HJ-1 Satellite CCD and ICESat GLAS waveform data. Science 
China Earth Sciences, 53(1): 16-25. 
 
Laurin G.V., 2014. Above ground biomass estimation in an 
African tropical forest with lidar and hyperspectral data. Isprs 
Journal of Photogrammetry and Remote Sensing, 89: 49-58. 
 
Lefsky M.A., 2005. Estimates of forest canopy height and 
aboveground biomass using ICESat. Geophysical Research 
Letters, 32(22). 
 
Mahoney C., 2014. Slope estimation from ICESat/GLAS. 
Remote Sensing, 6(10): 10051-11006. 
 
Miles L., 2008. Reducing greenhouse gas emissions from 
deforestation and forest degradation: global land-use 
implications. Science, 320(5882): 1454-1455. 
 
Neigh C.S., 2013. Taking stock of circumboreal forest Carbon 
with ground measurements, airborne and spaceborne LiDAR. 
Remote Sensing of Environment, 137: 274-287. 
 
Pflugmacher D., 2008. Regional applicability of forest height 
and aboveground biomass models for the Geoscience Laser 
Altimeter System. Forest Science, 54(6): 647-657. 
 
Popescu S.C., 2011. Satellite lidar vs. small footprint airborne 
lidar: Comparing the accuracy of aboveground biomass 
estimates and forest structure metrics at footprint level. Remote 
Sensing of Environment, 115(11): 2786-2797. 
 
Rosette J., 2008. Vegetation height estimates for a mixed 
temperate forest using satellite laser altimetry. International 
Journal of Remote Sensing, 29(5): 1475-1493. 
 
Saatchi S.S., 2011A. Benchmark map of forest Carbon stocks 
in tropical regions across three continents. Proceedings of the 
National Academy of Sciences, 108(24): 9899-9904. 
 
Saatchi S., 2011B. Impact of spatial variability of tropical 
forest structure on radar estimation of aboveground biomass. 
Remote Sensing of Environment, 115(11): 2836-2849. 
 
Sawada Y., 2015. A new 500-m resolution map of canopy 
height for Amazon forest using spaceborne LiDAR and cloud-
free MODIS imagery. International Journal of Applied Earth 
Observation, 43: 92-101. 
 
Schutz B.E., 2005. Overview of the ICESat mission. 
Geophysical Research Letters, 32(21). 
 
Sun G.Q., 2008. Forest vertical structure from GLAS: An 
evaluation using LVIS and SRTM data. Remote Sensing of 
Environment, 112(1): 107-117. 
 
Xing Y.Q., 2010. An improved method for estimating forest 
canopy height using ICESat-GLAS full waveform data over 
sloping terrain: A case study in Changbai mountains, China. 
International Journal of Applied Earth Observation, 12(5): 
385-392. 
 
Zhang G., 2014. Estimation of forest aboveground biomass in 
California using canopy height and leaf area index estimated 
from satellite data. Remote Sensing of Environment, 151: 44-56. 
 
Zolkos S.G., 2013. A meta-analysis of terrestrial aboveground 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-731-2016

 
736



 

biomass estimation using lidar remote sensing. Remote Sensing 
of Environment, 128: 289-298. 
 

Zwally H.J., 2002. ICESat's laser measurements of polar ice, 
atmosphere, ocean, and land. Journal of Geodynamics, 34(3): 
405-445. 

 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-731-2016

 
737




