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ABSTRACT:

On April 26, 2015, an earthquake of magnitude 7.8 on the Richter scale occurred, with epicentre at Barpak(28◦12′20′′N,84◦44′19′′E),
Nepal. Landslides induced due to the earthquake and its aftershock added to the natural disaster claiming more than 9000 lives.
Landslides represented as lines that extend from the head scarp to the toe of the deposit were mapped by the staff of the British
Geological Survey and is available freely under Open Data Commons Open Database License(ODC-ODbL) license at the Humanitarian
Data Exchange Program. This collection of 5578 landslides is used as preliminary ground truth in this study with the aim of producing
polygonal delineation of the landslides from the polylines via object oriented segmentation. Texture measures from Sentinel-1a Ground
Range Detected (GRD) Amplitude data and eigenvalue-decomposed Single Look Complex (SLC) polarimetry product are stacked for
this purpose. This has also enabled the investigation of landslide properties in the H-Alpha plane, while developing a classification
mechanism for identifying the occurrence of landslides.

1. INTRODUCTION

The Nepal Earthquake of April 26, 2015, is compared in terms
of damage to the great earthquake of 1934, (Rana, 1935), and is
regarded as part of a cycle of major earthquakes that occur due
to the tectonic fault running through Nepal. As of 23 Septem-
ber 2015, 395 aftershocks of magnitude above 4 Mw have been
reported. Landslides are predicted to plague Nepal in the near fu-
ture due to the increase in susceptibility and probability of further
earthquake induced events.

The Sentinel-1a satellite developed by the European Space Agency
and part of the Sentinel mission provides publicly available SAR
(Synthetic Aperture Radar) C-band data products, useful for study-
ing natural hazards. The full capabilities of the sentinel mis-
sion are illustrated in, (Torres et al., 2012). With the launch
of Sentinel-2 and Sentinel-3 satellite system, the complete sen-
tinel mission will eventually enable unprecedented monitoring of
the earth’s environment, (Kramer, 2012). In this investigation,
Ground Range Detected (GRD) data products from the Sentinel-
1a satellite is used for generating Gray-Level Co-Occurrence Ma-
trix (GLCM) and Gabor features for region growing segmenta-
tion. Numerous use of texture measures for segmentation can be
found in the literature, however, it has not been explored with
data from Sentinel-1a for delineating landslides. The current 12-
day repeat cycle of Sentinel-1a and subsequent reduction to 6
days after Sentinel-1b is operational, coupled with SAR not be-
ing affected by cloud cover, common during the monsoon sea-
son in Nepal when landslide occurrences increase, makes the use
of Sentinel-1 data highly valuable. Phase information is lost in
GRD conversion, but the phase information on Single Look Com-
plex (SLC) images can be used by generating Entropy, Alpha
and Anisotropic, (Cloude et al., 2002), data. This is accom-
plished by decomposing speckle filtered and debursted images
using eigenvalue decomposition, (Lee and Pottier, 2009). Though
quad polarized polarimetry product has been explored in the past,
(Yonezawa et al., 2012), (Yamaguchi, 2012), the dual polarized
data from Sentinel-1a has yet to be investigated for delineation
of landslides. These studies are conducted in this investigation
along with Eigenvalue decomposition from the VV, VH dual po-
larimetry product for characterizing landslides properties in the

H-Alpha plane. The specific data products used in this study is
given in Table 1.

The landslide events available from the Humanitarian Data Ex-
change Program, (Humanitarian Data Exchange, 2015), in poly-
lines form was used as the ground truth for guiding the creation of
the polygonal vector map via segmentation. All polygonal seg-
ments intersecting the polylines were denoted as landslide and
the disjoint sampled as non-landslides. With the binary target
variable thus generated, along with feature vector that included
statistical properties such as average, coefficient-variation, first-
quartile, maximum, median, minimum, percentile-90, range, stan-
dard deviation, sum, third-quartile, variance, from the GLCM,
Gabor and Alpha, Anisotropy and Entropy products, a classifier
system is applied. Area Under The Receiver Operating Charac-
teristic Curve is used as the metric for evaluating occurrences of
landslide from non-landslide segments. Performance of Random
Forest Classifier and Gradient Boosting Classifier are compared,
with appropriate adjustment to the imbalanced dataset. The Sen-
tinel Toolbox, (Veci et al., 2014), was used for generating tex-
ture and polarimetry features while Grass, (GRASS Development
Team, 2015), is used for region growing segmentation.

The satellite footprint, covers an area of 27 180.83 km2, as shown
in Figure 1, consisting of the town of Baglung to the west of the
epicentre, and Langtang National Park to the east, where in the
village of Ghoda Tabala more than 300 lives perished due to a par-
ticularly large landslide. In total 3760 landslides were recorded
inside this particular footprint, however a smaller region inside
this footprint as shown in Figure 1, is used as Area of study. This
also coincided with the availability of Digital Elevation Model
for the area.

Mission Type Acquisition Pass Track Swath

Sentinel-1A GRD 29-APR-2015 Descending 19 IW
Sentinel-1A SLC 29-APR-2015 Descending 19 IW

Table 1: Used Sentinel-1 data product
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Figure 1: Satellite footprint Area of study

2. METHODOLOGY

This section briefly gives the underlying principal, along with the
associated methodology and discussion for some crucial parame-
ter selection in the texture generation and polarimetry product, re-
quired by the segmentation step. Similarly segmentation method
and model tuning based on Bayesian optimization for the classi-
fication mechanisms are then shown, as well as the appropriate
method of handling imbalanced dataset.

2.1 Texture Generation

Texture can be quantified using a spatial relation and values of
neighbouring pixels in a symmetrical matrix. The Gray-Level
Co-Occurrence Matrix (GLCM) thus containing the frequencies
of the pairing of pixels with certain values and spatial relation
can be further used to generate second-order statistical properties,
(Albregtsen et al., 2008).

Gabor filters based on the Human Visual System, is a sinusoidal
modulated Gaussian, (Hammouda and Jernigan, 2000), resulting
in sensitivity to local orientation and frequencies suitable for tex-
ture analysis. This has also been explored for sea-ice texture
classification, such as in (Clausiyz and Jernigany, 1995). In this
study 0,45,90 and 135 degree oriented Gabor filters are evaluated.

There have been relatively few attempts in using SAR data for
texture analysis as compared to spectral or topological data. A
comprehensive analysis of using SAR data for generating GLCM
was done in (Soh and Tsatsoulis, 1999), for Sea-Ice classifica-
tion. In GLCM measures, the quantization Level, window size,
and orientation parameters are crucial in governing the quality
of segmentation for the given object. Quantization Levels ex-
presses the number of gray levels. Higher quantization allows
more expressiveness at the cost of computational power. Simi-
larly, the window size is specific to the objects that need to be
segmented and the resolution of the image. In (Blaschke et al.,
2014), (Stumpf and Kerle, 2011) orientation was shown to af-
fect the separability of landslides as they tend to have a flow di-
rection. Tuning these parameters using the whole pipeline from
texture generation to classification is infeasible as each process
is computationally intensive. Thus, Jefries-Matusita (JM) dis-
tance measure using twenty landslide events delineated manually
along with random non-landslides events was utilized to select
the best model parameter. The JM distance measure, equation
2, extended from the Bhatacharya distance, equation 1, is com-
monly used to determine the separability of a pair of probability
distributions.

Amplitude VV
Quantizer Probabilistic Quantizer
Quantization Levels 32
Window size 11x11
Angle All
Displacement 1

GLCM Measure

Contrast,Dissimilarity,Homogeneity,
Mean,Variance,Correlation
Energy,Entropy,
Angular Second Momentum

Gabor theta={0,45,90,135}
Polarimetry
Decomposition Entropy,Anisotropy,Alpha

DEM Measures Accumulation,Aspect,
Curvature,Slope

Table 2: Pre-processing features and selected parameters
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where B = Bhatacharya Distance

The JM distance is asymptotic to 2 when signatures are com-
pletely different, and tends to 0 when signatures are identical.
Thus, unlike the Bhatacharya distance there is an upper bound
and is used in this study to determine the quantization level, win-
dow size and orientation parameter for GLCM, so that the seg-
mented landslides are separable from the immediate surround-
ings. JM measures were also used to select the optimal GLCM
second order statistic. Some measures were dropped as its over-
all contribution to separability was small and since the addition
of layers in segmentation can lead to longer compute time. The
best parameters and features for the pipeline, according to JM
distance is given in Table 2.

2.2 Polarimetry Decomposition

Here, a brief description of Terrain Observation with Progressive
Scans SAR (TOPSAR), de-bursting of Sentinel-1 product, dual
polarization, speckle filtering, eigenvalue decomposition leading
to H-Alpha classification, as well as analysis of the Nepal earth-
quake induced landslides in terms of Entropy, Anisotropy and Al-
pha, along with reviews of surface characteristics of landslides in
comparison with other nearby scatterers in the H-Alpha plane, is
given. While full or quad polarized product provides better char-
acterization of surface scatterers, it is unavailable in the Sentinel-
1 mission. Only specific dual polarization as shown below are
available:
1. HH-HV or HH polarization for the monitoring of polar envi-
ronments, sea-ice zones
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2. VV-VH or VV polarization for all other observation zones
(with an exception for the Baltic Sea observed partially in HH-
HV during the northern winter, on descending orbits).

Thus, in the context of Nepal, VV-VH or VV polarization is avail-
able and in this study dual polarized SLC product in VV and VH
modes are utilized, Table 1. The pre-processing pipeline to ex-
tract Entropy, Anisotropy and Alpha, along with associated pa-
rameters is shown in Figure 2.

Figure 2: H-Alpha Decomposition Pipeline

The dual polarized SLC product used is collected in the Interfer-
ometric Swath Mode; the most common mode. Sentinel-1 pro-
gressively scans the terrain, in TOPSAR scan mode, (De Zan
and Guarnieri, 2006) , where a burst is cyclically switched be-
tween multiple adjacent sub-swaths, resulting in a superior signal
to noise ratio as compared to ScanSAR mode. Thus to merge the
sub-swaths for further processing, de-bursting is performed.

The Image quality is affected by granular noise pattern called
speckle noise, as many elementary scatterers in the scene inter-
fere with each other’s reflected wave causing pixel-to-pixel vari-
ation in intensities, (Lee and Pottier, 2009). This can seriously
affect the values of the final decomposition. Lee Sigma filter as-
sumes Gaussian distribution and thus computes the average of the
pixels falling within the range of a fixed sigma in a window, and
replaces the central pixel of the window with the computed value.
The window size is a determining factor in the effectiveness of
the Lee Sigma filter, given the scene, and subsequently the final
decomposition values can be affected by the modification of the
filter.

The speckle noise can be suppressed, but it still affects the scat-
tering matrix(〈[S]〉), given by equation 3, to the point that it can
not be used to characterize distributed scatterers, whose signature
are superimposed inside a resolution cell. Thus decomposing this
signature to identify single scattering process formed from it’s el-
ementary scatterers is required. A 3x3 hermitian average covari-
ance or the coherency matrix(〈[T3]〉), equation 4, derived from
the scattering matrix is used to analyse the distributed scatterers.

〈[S]〉 =

∣∣∣∣SHH SHV
SVH SV V

∣∣∣∣ (3)

〈[T3]〉 = [U3][Σ3][U3]−1 (4)

Eigenvector decomposition decomposes this Hermitian matrix, to
the diagonal matrix ([Σ3]) which contains the eigenvalue(λi) and
the unitary matrix ([U3]) contains the eigenvectors(ui). As out-
lined in (Cloude et al., 2002), these eigenvalue and eigenvector
becomes the basis of Entropy(H), Anisotropy(A) and Alpha(ᾱ)
given by:

Figure 3: A Landslide(Goda Tabala) in H-Alpha Plane
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The Entropy, Anisotropy, and Alpha thus derived is used in the
segmentation process given that it’s inclusion improved the JM
distance measure. After segmentation, the polygon vector of land-
slides and non-landslides facilitated the analysis in the H-Alpha
plane, where different zones are attributed to different scattering
mechanisms, (Cloude et al., 2002).

It has been shown that unsupervised classification based on the
H-Alpha plane explicitly distinguishes landslide areas from oth-
ers such as forest, water, and snow-covered areas, but does not
perform well for farmland, (Yonezawa et al., 2012), using quad
polarized ALOS PALSAR data. While, dual polarization, (Shan
et al., 2011), has also been shown to be capable of substituting for
quad polarization in certain cases. However in this study H-Alpha
classification from the dual polarization product alone was found
insufficient in studying landslide occurrence thus the added need
of texture and DEM measures to delineate landslide before analy-
sis in the H-Alpha plane was conducted to characterize landslide.

As reported in (Yonezawa et al., 2012), Entropy is lower over
landslide areas owing to the randomness of the scattering process.
It is characterized by surface scattering, while forested areas ex-
hibit double bounce. Alpha is high for forest areas and low on
bare, snow and water surfaces. In this study landslide segments
taken from a region near Ghoda Tabala, located in Langtang Na-
tional park, where a large landslide occurred, shows low entropy
and high alpha in the H-Alpha plane, Figure 3. The non-landslide
area have high entropy due to the presence of bare surface.
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2.3 Segmentation and classification

The experiment was set-up, as shown in Figure 5, by stack-
ing into a group the pre-processed layers derived from ampli-
tude data, which consisted of contrast, dissimilarity, homogene-
ity, mean, variance, correlation, energy, entropy, angular sec-
ond momentum and gabor filtered product with theta equal to
0,45,90,135 degrees. In addition, pre-processed data from SLC
product in the form of Entropy, Alpha, Anisotropy and their ratios
were also stacked to the same group. A region growing object ori-
ented segmentation was then applied on the stacked group, with
various thresholds. From the final segmented result, segments
or polygons which intersected with the ground truth polylines,
(Humanitarian Data Exchange, 2015), were labeled as landslides
and sub-sample of the disjoint as non-landslides. From each la-
beled landslide and non-landslide polygons, statistical measures:
average, coefficient-variation, first-quartile, maximum, median,
minimum, percentile-90, range, standard deviation, sum, third-
quartile, and variance were extracted from each layer of the group
as feature vector for the final classification pipeline. A Five fold
cross-validation, with appropriate strategies to counter the result-
ing imbalanced data was performed, Table 3. This also shows the
test-valid data splits for each fold. As the cross-validation con-
sisted of random sub-sample of non-landslides, a further method
of validating the result by sub-setting a smaller area as test-set,
but without any sub-sampling, was also conducted, Table 4, 5.

Figure 4: Polyline to polygon landslide segment via segmentation

Object oriented segmentation based on region growing, groups
similar pixel, given multi-layered data. The number and size of
the segments are determined by a threshold value that affects the
merger between segments based on a similarity measure. The
threshold value is an important parameter for extracting desired
objects. Landslides, for the given grouping of data layers used,
were found to be best segmented with a threshold value of 0.1 and
0.15. These values were selected based on the assumption that for
good segmentation result, the ground truth polylines should ap-
proximately extend from one edge of a segment to another, as
shown in Figure 4. Larger segments for the selected threshold
were further rejected using area of the segment. It is assumed that
the landslides occupy an area less than 0.25 km2. The polylines
falling in these larger segments were either unable to be detected
by segmentation or their appearance occurred later than the date
of acquisition of the satellite imagery. It was also observed that
some segments consisted of more than one polylines, which can
be attributed to the similarity of the nearby segments and the con-
sequent merger, even though the survey identified them as being
separate landslides. In Figure 6, a region in Langtang National
Park, where the segmented polygons intersecting with the poly-
lines designated as landslides from the survey, is shown as an
overlay in Google Earth.

In the classification step, interaction between the respective sta-
tistical measures of Alpha, Entropy, and Anisotropy were added
to the feature vector. This was driven by the fact that H-Alpha
classification, is conducted in the H-Alpha plane where Alpha

Figure 6: Landslide overlay

Figure 7: Random forest feature importance

and Entropy are the two orthogonal axis. Use of DEM measures
have been found to be a highly discriminating factor in landslide
susceptibility (Poudyal et al., 2010). Therefore, 1 arc-second
ASTER GDEM was obtained for the area under study and used
during the segmentation and classification process.

Hyperopt, (Bergstra et al., 2011), a framework, which facilitates
hyper-parameter selection from a search space over possible con-
figurations, allowed for the selection of the classifier with tuned
parameters. An objective function, such as cross-fold validation
that minimizes a cost function for Bayesian optimization needs
specifying in hyperopt. The 5 fold cross-validation result with
tuned classifier for the area of study is given in Table 3, which
consisted of 5.86% landslide affected area, resulting in 1430 seg-
ments that could be associated to landslides

The five fold cross-validation evaluated under Area Under The
Curve established the separability of the landslides from the non-
landslides using the extracted feature vectors. From Figure 7, vi-
sualizing the top feature importance from a Random Forest clas-
sifier, it can be seen that slope and GLCM texture measures ob-
tained from GRD product are discriminating features. The inter-
action between Alpha, Entropy and Anisotropy also turned out to
be discriminating. In fact, interaction between Entropy and Alpha
ranked fifth in feature importance. This result highlights a novel
use of polarimetry product in this study of classifying landslide
from non-landslide area.

Severe class imbalance arises as there are 1430 landslides and
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Figure 5: Experimental Setup

Classifier Segmentation
Threshold

Landslide
Segments

Non-landslide
Segments AUC

Random
Forest 0.15

1144 (train)
286 (valid)
1430 (total)

4800 (train)
1200 (valid)
6000 (total)

0.735

Random
Forest 0.10

1778 (train)
444 (valid)
2223 (total)

4800 (train)
1200 (valid)
6000 (total)

0.741

Gradient
Boosting 0.15

1144 (train
286 (valid)
1430 (total)

24000 (train)
6000 (valid)
30000 (total)

0.719

Gradient
Boosting 0.10

1178 (train)
444 (valid)
2223 (total)

24000 (train)
6000 (valid)
30000 (total)

0.721

Table 3: 5-Fold Cross-validation Result

66500 non-landslides segments. Methods to handle imbalanced
data, are illustrated in (Kotsiantis et al., 2006). Bootstrap that
reselects training instances and down-sampling the majority class
are some appropriate methods of overcoming class imbalance. In,
(Stumpf and Kerle, 2011), the authors incrementally increase the
the non-landslides segments to determine the ratio between land-
slides and non-landslides that best discriminates the two classes
using Random Forest. In this study it was found that the total
composition of landslides and non landslides in the the ratio of
1:4 gave optimal AUC score, though as reported in the literature
and further validated here this tends to overestimate the positive
class and may have resulted in loss of useful information due to
the down-sampling. For Gradient Boosted Classifier, landslides
and non-landslides were down-sampled only to the ratio of 1:20,
which constituted approximatively half of the total segments. For
the Gradient Boosting method, weights of the positive samples
were set higher to that of the negative samples to account for the
imbalanced data. Furthermore, Hyperopt found 4 to be optimal
for the max delta step parameter, which makes the update step
more conservative.

Threshold
(0.15)

Landslide effected
area (%)

Extracted
landslide
segment

Total
extracted
segment

Gradient
Boost
(AUC)

Random
Forest
(AUC)

Subset 1 29.36 194 1335 0.7324 0.719
Subset 2 12.58 97 2099 0.7096 0.68
Subset 3 5.63 43 1625 0.673 0.65

Table 4: Result for subset(Test area)

From the Area of study three smaller areas using a rectangular

Threshold
(0.10)

Landslide effected
area (%)

Extracted
landslide
segment

Total
extracted
segment

Gradient
Boost
(AUC)

Random
Forest
(AUC)

Subset 1 24.979 280 2138 0.701 0.6871
Subset 2 12.53 124 2923 0.689 0.684
Subset 3 4.818 62 2703 0.675 0.648

Table 5: Result for subset(Test area)

vector was subset and used as test data. The cross-validation re-
sults, serves to validate the model. However the samples were
randomized and stratified. In practise a spatially contiguous area
without sub-sampling needs to be classified. Thus tuned clas-
sifiers with dataset containing only the important features were
then retrained on the disjoint of this subset and the area under
study. The Receiver Operating Characteristic(ROC) curve for the
subsets are shown in Figure 8, 9 and the respective feature of
the area and performance in Table 4 and Table 5. The AUC
scores can be interpreted as fairly acceptable. Given the imbal-
anced nature of the data, a reasonable false positive rate can be
expected.

Figure 8: Receiver Operating Characteristic Curve(segmentation
threshold=0.15) using Gradient Boosting

3. CONCLUSION

The process outlined, establishes the use of Sentinel-1 GRD and
SLC product for landslide classification from segmented poly-
gons using textural and polarimetry features. Alpha, Entropy and
Anisotropy and their interaction ranked among the top features,
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Figure 9: Receiver Operating Characteristic Curve(segmentation
threshold=0.10) using Gradient Boosting

which further validates the use of polarimetry product in investi-
gating landslides. Only 75 top features as obtained from Random
forest feature importance was required for the best performing
model.

The exact time and date of the landslide can not be obtained from
the original survey, instead we have a time frame during which
the landslides had occurred. When obtaining satellite imagery,
time and date are fixed, therefore the actual landslide may have
occurred after the day of acquisition of imagery. Conversely, im-
agery from a later date than that of landslide occurrence could be
affected by other natural factors such as vegetation growth, lead-
ing to different scattering phenomenon than that of a landslide.
Hence it can be assumed that there maybe errors due to commis-
sion and omission in the original ground truth in comparison to
the used imagery. Thus, combined with the performance of the
classification methods as shown above, the use cases need careful
evaluation.

The current availability of all weather Sentinel-1 data in a 12 day
repeat cycle means that the proposed method is suitable for con-
tinuous monitoring of landslide events. It can be used a priori
to create a susceptibility map. Localized polygonal segments of
landslide events can be obtained if high false positives are tol-
erable. DEM generation from the polarimetry product through
Differential Interferometry would be highly valuable. Although
this process is computationally intensive, it can be obtained in the
future, thus enabling a wider area of study for which landslide
mapping has already been done. Furthermore, the quality of the
intersection between the polylines and segmented polygons can
be ascertained so that each sample in a learning algorithm is as-
sociated to a particular weight. This might help improve the AUC
score. Incorporating temporal parameters from before and after
landslide occurrences and inclusion of soil moisture can also be
explored in the future to develop landslide prediction capabilities.
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