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ABSTRACT: 

 

This paper presents a new method to correct rail errors of Ground Based Synthetic Aperture Radar (GB-SAR) in the discontinue 

mode. Generally, “light positioning” is performed to mark the GB-SAR position in the dis-continuous observation mode. Usually we 

assume there is no difference between the marked position and the real installation position. But in fact, it is hard to keep the GB-

SAR positions of two campaigns the same, so repositioning errors can’t be neglected. In order to solve this problem, we propose an 

algorithm to correct the rail error after analyzing the GB-SAR rail error geometry. Results of the simulation experiment and the real 

experiment of a landslide in Lvliang, Shanxi, China, show the proposed method achieves an mm-level precision, enabling the D-

GBSAR mode to be used in engineering projects. 
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1. INTRODUCTION 

Ground Based Synthetic Aperture Radar (GB-SAR) is a radar-

based terrestrial remote sensing imaging system (Tarchi et al., 

1999), consisting of a precision rail track and a radar sensor 

emitting and receiving microwaves repeat-pass along the rail 

(Noferini, 2004). It obtains the target deformation by interfering 

the observation data. Ku band GB-SAR is often used in 

deformation monitoring, as its short waves can achieve high 

precision. The precision of GB-SAR measurements varies from 

sub-millimeters to a few millimeters according to the target 

characteristics and the distance between sensor and target 

(DST). For some artificial targets, precision better than 1mm is 

attainable (Takahashi et al., 2013). With the flexibility, GB-

SAR can acquire deformations from as large as several meters 

per hour to as small as few millimeters per year (Leva et al., 

2003) by adjusting the observation model and period. So it can 

be applied in  open pit slope stability monitoring (Casagli et al., 

Farina et al., 2011; Farina et al., 2012; Mecatti et Al., 2010; and 

Severin et al., 2011), landslides monitoring (Tarchi et al., 2003b; 

Luzi et al., 2006; Herrera et al., 2009; Corsini et al., 2013; Barla 

et al., 2010; Schulz et al., 2012), urban monitoring (Pieraccini 

et al., 2004; Tapete et al., 2013; Pipia et al., 2013), structure 

monitoring (Tarchi et al., 1997), dam monitoring (Tarchi et 

al.,1999; Alba et al., 2008; Luzi et al., 2010a), and glacier 

monitoring (Luzi et al., 2007, Noferini et al., 2009; Hyangsun 

and Hoonyol, 2011). 

GB-SAR data can be acquired using two types modes: the 

continuous (C-GBSAR) and the dis-continuous (D-GBSAR). 

For the C-GBSAR mode, instruments are installed in situ, 

acquiring data on a regular base (e.g., every a few minutes). For 

the D-GBSAR mode, instruments are installed in each 

campaign and revisited a given site periodically (e.g., weekly, 

monthly or yearly) depending on the deformation speed 

(Noferini et al., 2008; Luzi et al., 2010b). D-GBSAR is 

especially useful in monitoring slow deformations. 

Traditional GB-SAR algorithm assumes that interferometric 

images are constituted by deformation phase, topographic phase, 

atmospheric phase and noise. However, in the D-GBSAR mode, 

it is hard to ensure the GB-SAR positions to exactly the same in 

two campaigns, so this repositioning error called GB-SAR rail 

error in this paper should be considered. In this case, “light 

positioning” is usually used to reduce the GB-SAR rail error, 

i.e., by simply materializing the GB-SAR location using some 

marks. Then co-registrations should be implemented. Detailed 

information of the algorithms can be found in Lin et al. (1992) 

and Hanssen (2011). However, as the GB-SAR precision can 

reach the submillimeter level, the co-registration error and 

residual error of rail still have impact on the measurement 

results even after marking and co-registration. In order to 

acquire reliable deformation results, we need correct the GB-

SAR rail error. 

To estimate and eventually reduce the GB-SAR rail error, a 

novel technique is proposed discussed in this paper. The first 

part of this paper introduces fundamentals and principles of 

GB-SAR, and then a new error model is proposed. Orbit 

deformation is simulated by computer, and the effect of each 

component to the monitoring result is analyzed. The last part 

presents a successful application example of D-GBSAR in 

monitoring the deformation of a landslide in Lvliang, Shanxi, 

China, using artificial corner reflectors.  

 

2. MATERIALS AND METHODS 

2.1 GB-SAR Error source analysis  

GB-SAR uses interferometric techniques to derive the 

deformation and topography of the observation area. Traditional 

GB-SAR algorithm assumes that interferometric images are 

constituted by deformation phase, topographic phase, 

atmospheric phase and noise (O. Monserrat et al., 2014). 

Deformation phase is regarded to the target displacement; 

topographic phase describes the elevation information; 
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atmospheric phase is related to atmospheric parameters which 

could be corrected by many different approaches (Noferini et al., 

2008; Iglesias et al., 2013; Iannini and Guarnieri, 2011); noise 

phase can be reduced by filtering. So the mode can be 

expressed as: 

 

 4
atm noiseR


  


                        (1) 

 

where    = differential interferogram phase 

 R  = DST 

 
atm  = differential atmospheric phase 

 
noise  = differential noise phase 

 

Atmospheric phase is compensated by the method proposed in 

(Tarchi et al. 1999) which is adapted to the ground-based 

geometry.Delaying phase due to the weather conditions along a 

path of length R is : 
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where  P = air pressure in millibars 

 T = temperature in kelvin 

 e = partial pressure of the water vapor in millibars 

 

As the GB-SAR rail positions in two campaigns can’t be 

identical, the GB-SAR rail error, called baseline in spaceborne 

SAR, is introduced. GB-SAR rail errors cause low coherence 

and instable displacement between two images, which can’t be 

corrected by spaceborne SAR methods directly due to different 

geometry between spaceborne SAR and GB-SAR. Based on 

this, we analyses the geometric relationship between radar 

sensors and targets, and propose a correction algorithm. The 

GB-SAR rail error is decomposed to three components in the 

range, azimuth and vertical direction, respectively. Figure 1(a, c, 

d) show the geometrical relationship of the three directions. 

Obviously, the range and azimuth components are related to the 

azimuth angle and the DST. The error of vertical component 

correlates to the vertical displacement, and the range and 

elevation of the target. So the three components could be 

expressed as:  
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where    = wave length 

 
,r a  = azimuth direction error phase 

 
,r r  = range direction error phase 

 
,r v  = vertical direction error phase 

 
1 ,

2  and 
2 = rail displacement projected on to the 

azimuth, the range and the vertical direction 

   = azimuth angle 

 h = elevation between radar and target 
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Figure 1. Geometrical relationship of the three directions and 

simulated results. (a), (b) Azimuth direction. (c), (d) Range 

direction. (e), (f) Vertical direction. 

 

As Figure 1(b, d, f) show the influence of range, azimuth and 

vertical direction rail error on the displacement. Among them, 

the error of the azimuth is related to rail displacement and 

azimuth angle, see Fig.1b. With an azimuth angle of 20°, the 

displacement is 2.92mm, and the GB-SAR rail error will be 

1mm. Figure 1(d) shows the error of the range is also correlated 

to rail displacement and azimuth angle. When the angle of 

azimuth is 20°and the range displacement is 1.06mm, the rail 

error will up to 1mm. Figure 1(c) shows correlation between the 

rail error in the vertical direction with the displacement, range 

and elevation of the target. If the range between target and radar 

sensor is 200m, elevation is 50m, and the displacement of 

vertical is 4mm, the rail error is 1mm. Compared with the 

azimuth direction rail error, the range component has greater 

effect on the result. 

In addition, a small displacement in the azimuth direction has 

great impact on the result precision, so the result will be 

unreliable if the GB-SAR rail error is not corrected.  

In practice, errors of the three directions (the range direction, 

azimuth direction and vertical) should be compensated together. 

A compound function is expressed as:  
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where  B = the length of base line 

 T = temperature in kelvin 

 e = partial pressure of the water vapor in millibars 

 

So the interferogram can be written as: 
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The EQ.7 can be taken as a linear system with 6 unknowns. 

Taking N stationary points (N>6) into consideration, the 

equation can be solved in a least square sense. 

 

2.2 Simulate rail error and atmospheric phase compensation 

respectively 

To verify the error correction model, a simulated experiment 

with only GB-SAR rail error is designed. GB-SAR instruments 

are installed in proper sites. Then we move the GB-SAR rail 

few minutes later to simulate the GB-SAR rail error. At the 

same time, real displacement of GB-SAR rail is recorded. In 

order to detect the GB-SAR rail error, we need eliminate the 

deformation phase, atmospheric phase and noise. Deformation 

phase is assumed to be zero in this experiment. The atmospheric 

phase is compensated by the empirical algorithm. And the noise 

is reduced by filtering. Then only the GB-SAR rail error left. 

Figure 2 and 3 show the original interferogram and the one after 

compensated. 

Specifically, we firstly move the GB-SAR system 10 mm and 

then 70 mm along the azimuth direction .Their interferogram is 

showed in Figure 2 (a) and (c). Obviously, the interferometric 

fringes are parallel to the azimuth direction, and they increase 

with the increase of displacements. These interferogram fringes 

are caused by the displacement of GB-SAR rail. Because other 

influential components values are relatively small, the effect of 

rail displacement is obvious. As the compensated results show, 

see Figure 2 (b) and (d), the computing rail errors are 8mm and 

73mm which have differences of 2mm and 3mm with the real 

value. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Rail error in the azimuth direction. (a) Interferogram 

containing 10mm rail error in the azimuth direction. (b)10mm 

rail error competition result. (c) Interferogram containing 70mm 

rail error in the azimuth direction. (d)70mm rail error 

compensation result. 

 

Secondly, move the GB-SAR system 20mm and then 80mm 

along the range direction. Their interferogram is showed in 

Figure 3 (a) and (c), which contain marked interferometric 

fringes. And the interferometric fringes are parallel neither to 

the range direction nor the azimuth direction, but have a circle-

like shape. As the compensated results show, see Figure 3 (b) 

and (d), the computed rail error is 16mm and 79mm, which 

have differences of 4mm and 6mm with the real value. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Rail error in the range detection. (a) Interferogram 

containing 20mm rail error in the range direction. (b) 20mm rail 

error competition result. (c) Interferogram containing 85mm rail 

error in the range direction. (d) 70mm rail error compensate 

result. 

 

The simulation experiment demonstrates that the proposed 

method is reasonable and flexible to correct the GB-SAR rail 

error, providing an mm-level correction precision. The 

precision in the azimuth direction is better than that in the range 

direction, because the latter shares similar spatial distribution 

characteristics with the atmospheric phase (both of them are 

related to DST), making difficult to distinguish them from each 

other. Also, the big the distance is, the more difficult the 

compensation of rail errors in both directions will be. 

 

3. APPLICATION 

We applied the proposed method to estimate the deformation of 

a landslide occurred in Lingjiaping railway station located in 

Lvliang County, Shanxi, China. The exact position of the 

landside is at the right side of the MDⅡK53+370~+680 line in 

the station. In the middle of November, 2013, a cutting 

evacuation project was started around the MDⅡK53+50~+630 

line. On December 14, 2013, two ring-like cracks appeared on 

the right side of the through cut, then a landslide happened on 

December 18. The landslide region is located on the west bank 

of the Qiushui River, in the middle of the slope between the 

Qiushui River and loess hill. The gradient of bedrock surface 

ranges between 0~24°. The excavation area centered on the 

terrace and the leading edge. The through cut slope has crossed 

the earth-rock interface. Figure 4 is a picture of the experiment 

area. The slop has been reinforced in 2015, but is not stable, so 

it is suitable to be an experiment area. Twelve corner reflectors 

installed on the landslide with concrete can be used as stable 

points to estimate the GB-SAR error phase. 

The GB-SAR system used in the experiment is developed by 

China University of Geosciences (Beijing) and the Beijing 

Institute of Technology. Figure 5 shows the SDMR-1 GB-SAR 

system, which consists of a continuous-wave step-frequency 

transceiver unit working at Ku-band. The band width of the 

system is 500MHz, and the sample interval is 2min. The range 

resolution and the azimuth resolution is 0.3m and 4.5@1Km, 

respectively. Detailed information of the system is showed in 

Table 1.  

 
Figure 4. Experiment area 

 

 
Figure 5. GB-SAR system used in the experiment 

 

Name Value 

Central Frequency 16.02GHz  

2.4m  

0.3m  

500MHz  

30m-3000m  

4.5m@1Km 

Linear Scanning Length 

Range Resolution 

Bandwidth 

Illuminating Distance 

Azimuth Resolution 

Table 1. Information of the SDMR-1 GB-SAR system 

 

Name Precision 

Temperature 0.2°C 

0.3%RH  

0.5hPa  

5m 

Humidity 

Air pressure 

Elevation 

Table 2. Parameters of Portable Meteorograph 

Atmospheric phase is related to the DST, so it could be 

expressed as: 

 

 2

0 1 2

4
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       (8) 

 

where  a0, a1, a2 = multinomial coefficient 
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Meteorological parameters (e.g., temperature, humidity, and air 

pressure), elevation, latitude and longitude are obtained by the 

TYD-SCW1 Portable Meteorograph. Precision of this 

instrument is listed in Table 2. Figure 6 (c) and (d) show the 

correction results of atmospheric phase by Quadratic model and 

Empirical model, respectively. These similar results show that 

the two algorithms are both effective to correct the atmospheric 

phase. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Comparison of empirical models. (a) Original 

interferogram. (b) Quadratic model compensation result. (c) 

Empirical model compensation result. 

 

Twelve corner reflectors were installed on the slide slop, and 

the GB-SAR was put facing the landslide, so all corner 

reflectors could be detected in one scan. Two D-GBSAR 

observation campaigns were performed (10/07/2015, 

30/05/2015) with an interval of 41 days. “Light positioning” 

was used in the first campaign, so the marks can guide the 

instrument installation in the second campaign. But it is 

impossible to ensure exactly same installation positions in two 

campaigns, so correcting the GB-SAR rail error after interfering 

the two campaign images is necessary. Chose one image from 

each campaign for interfering, and the interferogram is showed 

in Figure 7(a). Clearly, both the GB-SAR rail error and 

atmospheric phase are related to the DST. Then the GB-SAR 

rail error can be estimated by the proposed algorithm. 

Displacement in the range direction and azimuth direction are 

5.0mm and 2.9mm, respectively. Figure 7 (b) shows the sum of 

rail determination error and atmospheric phase. Final result of 

the deformation phase is shown in Figure 7(c), where 

deformation area is marked in yellow, with a sub-mm-level 

precision. 

 
(a) 

 
 (b) 

 
(c) 

Figure 7. Experiment data. (a) Original Interferogram phase. (b) 

Corrected phase. (c) Deformation. 

 

4. CONCLUSIONS 

This paper presents a new method to correct GBSAR rail errors 

in a discontinue mode. Compared with C-GBSAR, D-GBSAR 

is preferred for its lower monitoring cost, as the same 

instrument can be used in different monitoring several sites. But 

it also introduces new errors called GBSAR rail error, which 

generally can be reduced by “light positioning” (i.e., by simply 

materializing the GBSAR location using some marks). However, 

as the GB-SAR can achieve submillimeter precision, the co-

registration error and the residual rail error of still affect the 

measurement results, even after “light positioning” and co-

registration. Focusing on the geometry between GBSAR sensor 

and target, this paper deduced the formula of rail errors in the 

range, azimuth and vertical directions. When applied to 

simulation and real experiment, the new method achieved 

precisions up to mm-level, indicating it is quite applicable to 

compensate for GBSAR rail errors. The new algorithm can also 
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be applied to urban monitoring, structure monitoring and open 

pit mine monitoring. 
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