
IMPROVEMENT EVALUATION ON CERAMIC ROOF EXTRACTION USING 

WORLDVIEW-2 IMAGERY AND GEOGRAPHIC DATA MINING APPROACH 
 

V. S. Brum-Bastos a*, B. M. G. Ribeiro b, C. M. D. Pinho c, T. S. Korting d, L. M. G. Fonseca d  

 
a University of St. Andrews, Department of Geography and Sustainable Development, St. Andrews – Fife, United Kingdom – 

vdsbb@st-andrews.ac.uk 
b Federal University of Rio Grande do Sul (UFRGS), Graduate Program on Urban and Regional Planning (PROPUR) Porto Alegre –

RS, Brazil – barbara.giaccom@ufrgs.br 
c Federal University of ABC (UFABC), Engineering, Modeling and Applied Social Sciences Center (CECS), São Bernardo do 

Campo – SP, Brazil – carolina.pinho@ufabc.edu.br 
d National Institute for Space Research (INPE), Image Processing Division (DPI), São José dos Campos – SP, Brazil – 

(tkorting, leila)@dpi.inpe.br 

 

Commission ThS15 

 

 

KEY WORDS: Geographical Data Mining, GEOBIA, WorldView-2, Ceramic roof, C4.5, Decision Tree, Classification accuracy. 

 

 

ABSTRACT: 

 

Advances in geotechnologies and in remote sensing have improved analysis of urban environments. The new sensors are 

increasingly suited to urban studies, due to the enhancement in spatial, spectral and radiometric resolutions. Urban environments 

present high heterogeneity, which cannot be tackled using pixel–based approaches on high resolution images. Geographic Object–

Based Image Analysis (GEOBIA) has been consolidated as a methodology for urban land use and cover monitoring; however, 

classification of high resolution images is still troublesome. This study aims to assess the improvement on ceramic roof classification 

using WorldView-2 images due to the increase of 4 new bands besides the standard “Blue-Green-Red-Near Infrared” bands. Our 

methodology combines GEOBIA, C4.5 classification tree algorithm, Monte Carlo simulation and statistical tests for classification 

accuracy. Two samples groups were considered: 1) eight multispectral and panchromatic bands, and 2) four multispectral and 

panchromatic bands, representing previous high-resolution sensors. The C4.5 algorithm generates a decision tree that can be used for 

classification; smaller decision trees are closer to the semantic networks produced by experts on GEOBIA, while bigger trees, are not 

straightforward to implement manually, but are more accurate. The choice for a big or small tree relies on the user’s skills to 

implement it. This study aims to determine for what kind of user the addition of the 4 new bands might be beneficial: 1) the common 

user (smaller trees) or 2) a more skilled user with coding and/or data mining abilities (bigger trees). In overall the classification was 

improved by the addition of the four new bands for both types of users.  
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1. INTRODUCTION 

Novel development in remote sensing technologies have 

enhanced urban land use and land cover mapping over the last 

two decades, especially due to the availability of high–

resolution images (Blaschke, 2010). The sensors aboard new 

satellites are increasingly suited to urban studies, due to the 

enhancement in spatial, spectral and radiometric resolutions 

(Pinho et al., 2012; Ribeiro et al., 2011). As a result, sub–metric 

objects have been discriminated, which widely benefits urban 

studies using remote sensing data. The information extracted 

from these products are of great importance on the development 

of medium and long–term investments planning, monitoring the 

increasing demand for infrastructure and social equipment, and 

supporting public policies in compliance with environmental 

guidelines and targeted to provide better quality of life to 

society. 

 

Recent advances in geotechnologies provide resources to 

propose innovative strategies for urban and environmental 

management, including remote sensing data and computational 

resources for processing them, which, together, are able to 

generate high–quality databases and maps.  

 

Complex urban environments present high heterogeneity, which 

cannot be tackled using pixel–based approaches on high 

resolution images. The solely use of spectral information is 

insufficient to describe different types of settlements due to 

variation in the structure, material and shape. Hence more 

refined image analysis methods are being successfully applied 

for urban studies using high spatial resolution data.  

 

Geographic Object–Based Image Analysis (GEOBIA) has been 

consolidated as an efficient methodology for urban land use and 

land cover monitoring. However, even after continuous 

advances in GEOBIA, classification of high resolution images 

is still troublesome (Hay & Castilla, 2006). Softwares that 

perform GEOBIA provide a great number of attributes and 

different ways to model the semantic network, which make the 

task of classification lengthy and complex (Korting et al., 2008; 

Ribeiro & Fonseca, 2013). Determining the most relevant 

features to be used in classification routines is not always an 

easy task when conventional exploratory analyses are carried 

out (e.g., scatter plot, histograms, feature values shown in grey 

levels, etc.). Research concerning GEOBIA has presented 

innumerous advances, though some problems related to the 

feature selection and large amount of data are still unsolved.  
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Data mining tools can increase the potential for the analysis of 

remote sensing data (Fayyad et al., 1996) as it enables to 

discover useful knowledge implicit in the data and to extract 

patterns from large datasets (Pinho et al., 2008). Thus, the use 

of data mining methods for attribute selection became very 

attractive for urban remote sensing due to the hundreds of 

spectral, texture and geometric attributes that can be used in 

GEOBIA classification routines. Despite the wide exploration 

of urban land cover classification based on high resolution 

imagery, few studies have applied automatic methodologies to 

define parameters and features for object–based image 

classification (Bastos et al., 2013; Carvalho et al., 2012; 

Meneghetti & Kux, 2014; Pinho et al., 2008; Ribeiro & 

Fonseca, 2013), and presented satisfactory results suggesting 

that the use of data mining algorithms can provide high 

classification performance results (e.g., Carvalho et al., 2012; 

Ribeiro & Fonseca, 2013) and in time saving on building 

semantic network and on attribute selection (Bastos et al., 2013; 

Meneghetti & Kux, 2014; Ribeiro & Fonseca, 2013). 

 
Until WorldView-2 launch in October 2009, high resolution 

images were limited to four spectral bands, which has restricted 

discrimination of urban targets (Pinho et al., 2011). With eight 

multispectral bands with 1.85 m of spatial resolution and a 

panchromatic band with 0.5 m (Figure 1), WorldView-2 is a 

first attempt to overcome this trade-off (DigitalGlobe, 2012; 

Ribeiro & Fonseca, 2012).  

 

 

Figure 1. Spectral interval of Ikonos-2, QuickBird-2 and 

WorldView-2 multispectral and panchromatic bands. 

Source: DigitalGlobe (2009; 2012) and GeoEye (2006). 

High spectral resolution, along with high spatial resolution, is 

particularly interesting for urban mapping, since it may assist in 

the classification of roof materials, such as ceramic tiles 

(Almeida et al., 2009; Ribeiro, 2010; Souza et al., 2009). Roof 

constitution acceptably indicates buildings wealth and use, 

which are essential pieces of information for urban planning 

and administration (Almeida et al., 2009; Souza et al., 2007). 

The differentiation between ceramic tile roofs and bare soil is a 

main issue, because these objects have similar spectral response 

but are semantically different. Ceramic roofs represent buildings 

while bare soil indicates an unoccupied area and non-

impervious surface (Ribeiro, 2010; Ribeiro & Fonseca, 2012). 

 

Generally, roof constitution is not easily discriminated by 

automatic classification in high resolution images, for example 

Ikonos-2 and QuickBird-2 (Leonardi, 2010; Pinho et al., 2012). 

However, studies indicate that WorldView-2 Yellow and Red-

Edge bands help to improve roofs classification, even though 

not designed for it (Ribeiro, 2010; Ribeiro & Fonseca, 2012). 

This paper aims to assess the improvement, for different users, 

on the extraction of ceramic roof on WorldView-2 images due 

to the 4 new bands. Our methodology combines GEOBIA, C4.5 

data mining algorithm and statistical tests of classification 

accuracy. Two samples groups were considered: 1) eight 

multispectral and panchromatic bands, and 2) four multispectral 

and panchromatic bands, representing previous high-resolution 

sensors (e.g., Ikonos-2 and QuickBird-2).  

2. METHODOLOGY 

2.1 Materials 

The WorldView-2 image was acquired on December 6, 2009. 

The 0.5-m panchromatic band and the 2.0-m multispectral 

bands (coastal, blue, green, yellow, red, red-edge, near-infrared 

1 and 2) images are standard geometrically corrected (Standard 

Ortho Rectified Level 3) and have an 11-bit radiometric 

resolution and 22.2º off-nadir angle. The scene covers 

approximately 4.5 km × 3.0 km centred at Vila Sônia, an urban 

district located in the west fringes of the city of São Paulo, the 

most populated city of Brazil (Figure 2). 

Vila Sônia is a peripheral district, 17 km away from São Paulo 

CBD (Central Business District). Its urban development dates 

of 1960s, due to the proximity to Morumbi District. A 

traditional neighbourhood, settled by Japanese immigrants, Vila 

Sônia counted, in 2010, 110,409 inhabitants (IBGE, 2011). In 

the last two decades, the occupancy pattern has been changing 

from middle class medium sized properties to high standard 

vertical buildings, mixing residential and commercial areas. The 

great social gap in this area is evident, with slums and high 

standard gated communities existing side by side.  

  

 

Figure 2. Study area location. WorldView-2 image composition 

R(5) G(3) B(2). 

 

2.2 Methods 

The eight WorldView-2 multispectral bands were converted 

from Digital Numbers (DN) to apparent reflectance, according 

to Digital Globe guidelines. This procedure rescues spectral 

absorption features, favouring target discrimination, which is 

particularly relevant for improvements in automatic 

classification. 
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HIS (Hue, Intensity and Saturation), HSV (Hue, Saturation, 

Value), PC (Principal Components) and Grand Schmidt pan-

sharpening were performed on the eight DN multispectral 

bands. According to visual analysis, Grand Schmidt pan-

sharpening performed best and that is why it was the one used 

for the following steps. The result is a hybrid image with eight 

spectral bands and spatial resolution equal to 0.5 m. 

 

The apparent reflectance, DN numbers and sharpened bands 

were imported into eCognition 8.0 (Trimble Geospatial, 2011) 

and the multiresolution segmentation algorithm (Baatz & 

Schape, 2000) was applied to them, with weight 1 for the 

panchromatic band and 0.5 for the others. Due to the diversity 

of sizes, four segmentation levels were necessary (Figure 3). 

The following attributes were generated for all objects: mean, 

standard deviation, contrast to neighbour pixels, border 

contrast, band ratio among all bands, minimum pixel value, 

maximum pixel value, mean of outer border, mean of inner 

border, band mean, skewness and standard deviation to 

neighbour pixels. We also calculated the ratios between each 

pair of apparent reflectance band, because it highlights spectral 

signatures (Schowengerdt, 2007) what may had increase 

discrimination between classes. 

 

 

Figure 3. Multiresolution segmentation levels.  

 

We manually collected 1406 samples across the intra-urban 

land cover classes: BRIGHT OBJECTS (44), TREES (268), ASPHALT 

(165), LIGHT CERAMIC ROOF (71), DARK CERAMIC ROOF (182), 

METALLIC ROOF (87), LIGHT CEMENT MATERIAL/OBJECTS (56), 

DARK CEMENT MATERIAL (81), SWIMMING POOL (45), GRASS AND 

SHRUBS (127), LIGHT BARE SOIL (49), DARK BARE SOIL (67) and 

SHADOW (164). The land cover classes were defined considering 

their occurrence in the study area. For this reason, shadow class 

had to be considered due to the image characteristics, once it was 

acquired at offnadir and after 12:00 am, which causes shadows 

cast by elevated urban objects, particularly buildings. This is a 

limitation on the use of high spatial resolution images acquired 

over dense urban areas. 

 

These shaded areas are usually left unclassified or simply 

classified as shadows, resulting in a significant loss of land 

features information. GEOBIA is one possible approach to 

overcome this problem, through the use of algorithms that 

consider not only the spectral information but also several other 

image object features, such as adjacency relations, spatial 

information, shape, texture and spatial context for the 

classification of shaded areas in this kind of images (e.g., Pinho et 

al., 2012; Zhou & Troy, 2008; Zhou et al., 2009). In this case, due 

to the large dimensions of the shadows, covering large areas in the 

scene, we preferred to define them as an independent class. 

 

Two sample sets were generated: the first with 300 attributes 

derived from the eight WorldView-2 bands, and the second with 
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200 attributes derived from Blue, Green, Red and NIR 1 

WorldView-2 bands. 

 

We applied the C4.5 algorithm (Quinlan, 1993) to both sample 

sets; this algorithm generates a decision tree that can be used for 

classification. The C4.5 decision tree algorithm works in the 

following way: each node of the decision tree matches an 

attribute and each arc matches a value range of that attribute. 

The expected attribute value is defined by the path from the root 

to each leaf. The most representative attribute is associated with 

each node. The entropy is calculated to assess how informative 

a node is. The larger the entropy, the more information is 

necessary to characterize the data. The goal is to associate with 

a node the attribute that minimizes the data entropy (Silva et al., 

2008). 

 

After associating the attribute with a node, the decision tree 

algorithm defines a threshold value for each arc. The threshold 

is computed by nearest neighbour algorithm. Firstly, the 

algorithm calculates the Euclidian Distance from the training 

samples to an instance of the data. The instance will be assigned 

to the class that is closest to it in the space of attributes (Witten 

& Frank, 1999). The C4.5 algorithm removes unnecessary 

nodes through the pruning procedure, producing the shortest 

tree possible (Witten & Frank, 1999). The number of instances 

in each leaf also controls the size of the tree. The lower the 

number of instances, the more precise the classification for the 

training set is. 

 

The minimum number of objects per leaf (MOL) is a parameter 

of C4.5 that defines the pruning and the final number of leaves 

of the tree. Therefore, it has substantial influence on the 

classification accuracy. In addition, high MOL values produce 

classification trees with less leaves, i.e., smaller trees, which are 

closer to the semantic networks produced by experts on 

GEOBIA software for manual classification; while small MOL 

values produce trees with more leaves, i.e., bigger trees that are 

not straightforward to implement manually but are more 

accurate. The choice for a big or small tree relies on the user’s 

skills to make the implementation, so a variable MOL will allow 

us to specify for what kind of user the addition of the four new 

bands might be beneficial: 1) the common user (smaller trees) 

or 2) a more skilled user with coding and/or data mining 

abilities (bigger trees).  

 

Using a Monte Carlo simulation we performed 100 interactions 

for each MOL value ranging from 1 to 100; for each interaction 

a new subsample set was randomly selected for both sample 

sets. The confusion matrix was calculated for each iteration, 

using stratified cross-validation, where 50% of the samples 

were used for training and 50% for testing. Based on the 

confusion matrix, the Kappa index (Cohen, 1960) and the user’s 

accuracy were calculated for each iteration and MOL value for 

the classes LIGHT CERAMIC and DARK CERAMIC (Story & 

Congalton, 1986; Foody, 2002).  

 

The overall Kappa values and user’s accuracies for each MOL 

value, from the sample sets with eight band and four bands, 

were submitted to the one tailed independent two-sample t-test 

for equal sample sizes and variances. The t-test was based on 

the following hypothesis. 

 

 H0: μ8bands = μ4bands  

 H1:  μ8bands > μ4bands  

Where μ8bands is the average Kappa, LIGHT CERAMIC user’s 

accuracy or DARK CERAMIC user’s accuracy for the eight bands 

sample set and μ4bands is the average Kappa, LIGHT CERAMIC 

user’s accuracy or DARK CERAMIC user’s accuracy for the 4 

bands sample set. 

 

The level of significance α=0.05 was selected to evaluate if 

there was or there was not improvement on Kappa and user’s 

accuracy for both classes across the MOL interval. After, a 

summary graph was generated to visualize the interval where 

there is improvement for all indices. 

 

3. RESULTS 

Kappa values decreased with MOL increase and it was not 

possible to visually distinguish which sample set performed 

best, because Kappa ranges for each MOL were almost the same 

for the four bands and eight bands (Figure 4). The decrease in 

Kappa was expected, once a bigger MOL creates a more 

generalized classification tree, i.e., it is more likely that pixels 

from different classes will be allocated in the same class.  

 

 

Figure 4. Kappa × MOL for each iteration. 

User’s accuracies for LIGHT CERAMIC were not really sensitive to 

MOL value until 25 MOL for four bands, while this interval 

extends to 50 MOL for eight bands (Figure 5). Although this 

sensitiveness could be explained by the low number of samples 

available for this class, the difference between the sensitiveness 

thresholds indicates a potential improvement on the 

classification when using eight bands. The more frequent low 

user’s accuracies for bigger MOL values were expected and can 

be explained by the same reason as the decrease in Kappa 

values.  

 

User’s accuracies for DARK CERAMIC decreased for both samples 

sets for MOL values between 35 and 50 for both sample sets 

(Figure 6) and in the interval between 55 and 70 MOL, the 

eight bands sample set seems to perform better. Considering 

that the user’s accuracies for LIGHT CERAMIC follow a similar 

pattern, we believe that this trend reflects DARK CERAMIC 

samples that were classified as LIGHT CERAMIC. However, a 

more detailed analysis of all confusion matrices, for each MOL 

interval, is needed in order to confirm this. We expected more 

frequent low user’s accuracies for bigger MOL, however this 

was not a prominent trend for this class, independent of sample 

set group. This could be explained by the low presence of dark 

bare soil and the DARK CERAMIC singular spectral features in the 

red interval, which improves the distinction to soil and LIGHT 

CERAMIC for both sample sets and independent of the size of the 

classification tree. 
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Figure 5. LIGHT CERAMIC user’s accuracy × MOL for each 

iteration.  

 

 

Figure 6. DARK CERAMIC user’s accuracy × MOL for each 

iteration.  

 

The p-values from t-test indicated, at 95% confidence level, that 

in average the improvement, due to the addition of the four new 

bands, is significant only for some MOL intervals for all 

evaluated indices (Figure 7). The Kappa showed the most 

extensive improvement ranging from 7 to 79 MOL, which 

indicates that indeed in overall the classification is improved by 

the addition of the four new bands for both type of users.  

However, for the DARK CERAMIC the user’s accuracy 

improvement ranges from 22 to 43 MOL and for the LIGHT 

CERAMIC the user’s accuracy improvement ranges from 20 to 79 

MOL, that are MOL intervals more related more related to 

smaller trees and consequentially to user type 1. The 

improvement on DARK CERAMIC between 90 and 98 was 

ignored, because although the user’s accuracy can be high for 

this class in this interval (Figure 6), the Kappa is extremely low 

for the same interval (Figure 4), i.e., it would be suitable only 

for a classification with a single class, what is extremely 

uncommon. 

 

The Summary graph (Figure 7) shows that between 23 and 42 

MOL there is significant improvement in the overall 

classification (Kappa) and specifically for LIGHT and DARK 

CERAMIC, i.e., this would be the optimum interval for the use of 

the new four bands with a significant improvement in the 

classification. However, as smaller MOL values result in better 

Kappa values, the lowest possible MOL should be used; for 

example for MOL=23 the averaged overall Kappa is 0.75. In 

addition, considering that users type 2 are more inclined 

towards trees with smaller MOL then 20, the four new bands 

might be more relevant to users type 1.  

 

 

 

Figure 7.  Classification performance × MOL according to t-test (p-value= 0.05) 

 

4. CONCLUSIONS 

For this study, in overall the classification was improved by the 

addition of the four new bands for both types of users.  

However, for DARK CERAMIC and LIGHT CERAMIC extraction the 

improvement is related to smaller trees and consequentially to 

user type 1 only. 

 

Although this is a preliminary study, it brings to light some 

important issues regarding the imagery choice for urban 

classification; mainly taking into account that the acquisition of 

an image with eight multispectral bands can cost twice as much 

as an equivalent four-band image (reference date: June, 2015). 

At the image purchase it is important to consider who will be 

manipulating this material, once it is less likely that an user type 

2 will benefit from the new bands, i.e., that would be a loss of 

resources. However, for an user type 1 this can improve the 

quality of the final map.  

 

We are aware that the continuous development on high 

resolution satellites have been improving mapping for urban 

areas; however this improvements must not put a break on the 

development of methodologies focused on, for example, making 

the implementation of long trees feasible for any user. There is a 

mismatch between the information these images can provide us 

and what we actually can extract from them, that is why it is 

important to constantly evaluate this cost-benefit relationship 

and work to spread the more complex GEOBIA techniques in 

the most straightforward way possible. 

 

In addition, the problem of dimensionality or U-shaped curve 

behaviour has been often noted in the literature (Bellman, 
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1961). It was observed that the addition of attributes may 

sometimes not improve or even decrease the classification 

quality, mainly if the number of training samples is small 

compared to the number of attributes. The use of many 

attributes to classify a dataset can unnecessarily complicate the 

models and violates the principle of parsimony. According to 

this principle, always when possible, a smaller number of 

variables should be considered, so that the model can be more 

easily interpreted. 

 

GEOBIA community is in a moment where the focus must be to 

improve our extraction methodologies to catch up with the 

satellites technologies available, mainly regarding segmentation, 

which is still a controversial topic within GEOBIA. This study 

is not exhaustive and to assess other intra and inter classes’ 

improvement we intend to perform more tests including a 

greater diversity of World View-2 scenes and to proceed with 

deeper evaluation of the confusion matrices. 
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