
GEOSPATIAL DATA STREAM PROCESSING IN PYTHON USING FOSS4G
COMPONENTS

G. McFerren a *, T. van Zyl
a CSIR Meraka Institute, Meiring Naudé Road; Brummeria; Pretoria; South Africa - gmcferren@csir.co.za

fb School of Computer Science and Applied Mathematics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000,
Johannesburg, South Africa - terence.vanzyl@wits.ac.za

KEY WORDS: Geospatial data streaming platform, Data velocity, Python, FOSS4G geospatial libraries, performance, SpS10-
FOSS4G

ABSTRACT:

One viewpoint of current and future IT systems holds that there is an increase in the scale and velocity at which data are acquired and
analysed from heterogeneous, dynamic sources. In the earth observation and geoinformatics domains, this process is driven by the
increase in number and types of devices that report location and the proliferation of assorted sensors, from satellite constellations to
oceanic buoy arrays. Much of these data will be encountered as self-contained messages on data streams - continuous, infinite flows
of data. Spatial analytics over data streams concerns the search for spatial and spatio-temporal relationships within and amongst data
“on the move”. In spatial databases, queries can assess a store of data to unpack spatial relationships; this is not the case on streams,
where spatial relationships need to be established with the incomplete data available. Methods for spatially-based indexing, filtering,
joining and transforming of streaming data need to be established and implemented in software components. This article describes
the usage patterns and performance metrics of a number of well known FOSS4G Python software libraries within the data stream
processing paradigm. In particular, we consider the RTree library for spatial indexing, the Shapely library for geometric processing
and transformation and the PyProj library for projection and geodesic calculations over streams of geospatial data. We introduce a
message oriented Python-based geospatial data streaming framework called Swordfish, which provides data stream processing
primitives, functions, transports and a common data model for describing messages, based on the Open Geospatial Consortium
Observations and Measurements (O&M) and Unidata Common Data Model (CDM) standards. We illustrate how the geospatial
software components are integrated with the Swordfish framework. Furthermore, we describe the tight temporal constraints under
which geospatial functionality can be invoked when processing high velocity, potentially infinite geospatial data streams. The article
discusses the performance of these libraries under simulated streaming loads (size, complexity and volume of messages) and how
they can be deployed and utilised with Swordfish under real load scenarios, illustrated by a set of Vessel Automatic Identification
System (AIS) use cases. We conclude that the described software libraries are able to perform adequately under geospatial data
stream processing scenarios - many real application use cases will be handled sufficiently by the software.

1. INTRODUCTION

This paper concerns the description of a Python-based data
streaming framework called Swordfish that is designed to be
used in the transport and processing of streams of data that
contain a geospatial or locational component.

We offer a brief introduction to the data streaming paradigm and
provide some descriptive examples of data streaming software
frameworks, before discussing the nature of geospatial data on
streams. We then introduce the Swordfish framework – its
architecture, approach to processing and implementation
specifics – leading to a discussion on geospatial processing
functionality and the Free and Open Source Software for
Geospatial components that enable this functionality. Early
performance insights are discussed. Finally, some usage
scenarios are provided.

1.1 General Data Streaming Background

The concept of data streaming systems has long been
recognised. In the (Babcock, et. al., 2002) synthesis and in
(Lescovec et. al., 2014), a class of systems is identified that
processes data arriving in “multiple, continuous, rapid, time-
varying data streams” rather than data in sets of persistent
relations. These data streams may be infinite or ephemeral and
are often unpredictable (Kaisler, et.al., 2013).

The need for these kinds of systems results from the burgeoning
of data arising from numerous sources including (Lescovec et.
al., 2014), (Pokorný, 2006), (Kaisler, et.al., 2013),
(Stonebraker, et. al., 2005):

 arrays of sensor networks or earth observing satellites
continuously and variably transmitting multiple
measurements of environmental parameters

 packets of data generated by network traffic
 social media
 science experiments and model outputs
 monitoring systems (cameras, electronic tolling)
 positions of moving objects (vehicles on roads,

vessels at sea, parcels or cargo in delivery process)
 market trading systems, which can peak at several

million messages per second, as illustrated by (FIF,
2013)

These data sources can produce very large volumes of data at
rapid rates, in a variety of forms and complexities. It is difficult
or infeasible to store all these data and analyse post-acquisition
(Kaisler, et.al., 2013). Data streaming systems exist to process
and extract value from such data as it is 'in-motion' with low
latency.

* Corresponding author

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

931

Significant computational challenges arise as a result of these
data stream characteristics, necessitating methods for ETL
(extract, translate and load) of data, sampling strategies,
aggregation and stream joining techniques, windowing
approaches, stream indexing, anomaly detection, clustering,
summarising of streams and many others as described by
(Lescovec, et. al., 2014) and (Agarwal, 2007).

In (Stonebraker, et. al., 2005), it is argued that stream
processing systems must exhibit eight properties:

1. Data should be kept moving – there should be no
need to store data before processing and data should
preferably be pushed rather than pulled to the
processing components.

2. Support for a high-level processing language
equipped with stream-oriented primitives and
operators such as windows.

3. Resilience to imperfections of streams, such as partial
data, out-of-sequence data, delayed or missing data
and corrupted data.

4. Outputs should be predictable and repeatable (though
as described above, techniques exist to sample and
summarise streams of data, perhaps leading to a third
quality statement around statistical significance).

5. Ability to store, access and modify state information
and utilise such state in combination with live data,
without compromising on low latency goals.

6. Mechanisms to support high availability and data
integrity, for example through failover systems

7. Ability to scale or distribute processing across
threads, processors and machines, preferably
automatically and transparently.

8. Near instantaneous processing and response –
provision of a highly optimised execution
environment that minimises computations and
communication overheads.

These properties provide guidance on the architecture and likely
the goals of a data streaming system.

1.2 Geospatial Data Streaming Background

A significant amount of the data originating from the sources
described previously, such as sensor networks, moving objects
and social media has an explicit or implicit location or spatial
context that can be utilised as data is processed.

This has some implications for data streaming software
frameworks. Firstly, frameworks need to be capable of
processing the extra volume of data necessary to describe
location or spatial relationships. Second, it is important that
data streaming components recognize geospatial data in the
different forms it manifests in, so that the data can be accessed
as efficiently as possible in pursuit of low latency. Thirdly, there
needs to be a recognition that a significant number of the offline
algorithms and processes that characterise geospatial
computation (i.e. algorithms that have full knowledge of their
input data) are not appropriate for the continuous, possibly
infinite and often incomplete online nature of data streams, as
noted by (Zhong, et. al., 2015). Algorithms and processes here
need to deal with data as it arrives and may never have sight of
the data again, since the complete data stream is unlikely to be
captured in local computer memory.

This last issue hints at a need for a deeper discussion of
classification of geospatial computation functions for streaming
data. This is not dealt with here; for the purposes of this article
it is enough to observe that different geospatial computations
will be more adaptable to a streaming paradigm than others.

This is driven by the complexity of the calculation and the
amount of state or information completeness that is required by
the calculation.

In concrete terms, a process that simply filters data by feature
name or ID will be well suited to a streaming paradigm since it
exhibits low complexity and no state requirement. A process to
transform the spatial reference system of features is also easily
fitted to a data stream, even though the process is more
complex, since there is no state requirement to handle.

A process to join together two datasets based on a spatial
relationship such as feature containment is more difficult or
even intractable to implement in a streaming system. The state
of both streams needs to be known, since each feature on one
stream needs to be compared with every feature on the other
stream; furthermore, the individual calculations could be
expensive, depending on the complexity of the streamed
features. This type of geospatial computation exemplifies the
notion of an offline algorithm. However, a geospatial data
streaming system arguably should offer this kind of
functionality. Stream windowing functions like time-based
windows (features for the last 10 minutes) or count-based
windows (the last 100 features) offer a way to manage a limited
amount of state. A spatial join could be performed on the
features in small windows of the data streams, such that only
features within the windows are compared to each other. This
spatial join process also highlights the importance of spatial
indexes on streams: in order to reduce latency and keep data
moving, as per the eight properties of stream processing, a
spatial index on the features in one window may help to reduce
the number of containment calculations executed.

The geospatial stream processing approach may be deployed in
answering a wide variety of geocomputation query types. Two
classes of geospatial analysis are illustrative. (Xiong, et.
al.,2004) provides some examples of queries that analyse the
spatial relationships between features that change location over
time:

 moving queries on stationary objects – petrol stations
within a given distance of a moving car

 stationary queries on moving objects - counts of
vessels inside a harbour, aeroplanes inside an
airspace, cars on a road section

 moving queries on moving objects – the position of
icebergs in relation to ship positions

(Zhong, et. al., 2015) demonstrate spatial statistical calculations
over streams to generate spatial grids (for use in fire behaviour
models) from point location data from sensor networks.

In broad terms, a geospatial data streaming framework should
provide functionality for efficient structuring, filtering,
aggregating, joining, transforming and analysing of the spatial
component of data 'in motion'.

1.3 Data Streaming Implementations

A number of proprietary and open-source data streaming
frameworks and query languages have existed in the last fifteen
years. This paper does not intend to enumerate them, a task
undertaken by (Jain et. al., 2008). Instead, we present here some
modern, open source examples of data streaming frameworks
that have influenced this work or are illustrative of the data
stream processing domain. The frameworks briefly considered
here are Storm, Samza, Kafka Streams and Spark Streaming.

In this viewpoint, we briefly describe, for each implementation:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

932

1. Implementation origin – developers and driving use
case of the implementation;

2. Data form – the atom of streaming, usually a tuple of
values or a message consisting of key-value pairs;

3. Streaming transport – the underlying infrastructure
used to move streaming data around;

4. Deployment and Execution infrastructure – the layers
of software upon which framework resides and
processing logic can be run;

5. Processing approach - batch/ mini-batch processing
or per-atom processing;

6. Processing API – the kinds of functionality that are
provided for processing data streams;

7. Domain-specific data model – the nature of a domain
specific streaming data model , if present;

8. State Model and fault tolerance – many operations on
streams require maintenance (and recovery) of state;
streaming systems must be resilient to node failure
and minimise or prevent message loss.

These tables should be viewed in terms of the eight stream
processing system properties identified above.

Storm – http://storm.apache.org/

Origin Twitter Corporation – stream processing,
continuous computation and distributed RPC.

Data form Tuples. Represented as a named list of values of
primitive or user-constructed types. The nature
of the tuple is declared by the outputting node (a
Bolt or Spout). Uses Kryo serialisation or Java
serialisation internally. JSON is the interchange
format when working in multiple languages

Transport Storm has a message-oriented push-based
approach, allowing it to abstract multiple
message systems (such as AMQP, Twitter,
Kestrel, JMS, Amazon Kinesis and Apache
Kafka) and databases as Spouts.

Execution Requires a Storm Cluster for managing
(resource allocation, distribution and fault
tolerance) computational topologies, using
Zookeeper as the cluster manager; Java Virtual
Machine with ability to write processes in
multiple languages.

Processing Per message processing – data are processed as
received; functionality exists for batching,
provided as a separate software layer

API Computational topology/ graph oriented. An
application is a topology deployed to a Storm
Cluster. Object-Oriented. Streams are created
from Spouts and are processed by Bolts, which
are containers for arbitrary code. Windowing
functionality can be added to Bolts. Also
provides a basic SQL API. Provides a higher
level API called Trident for micro-batching and
harnessing the MapReduce style for gaining
functionality for mapping, grouping, joining,
aggregating and filtering data streams and
persisting state in a number of databases/ caches

Data model N/A – general purpose

State model
and
resilience

Local state storage relies on memory and HDFS.
Trident allows persistence to external stores and
provides an API for managing state and
achieving fault tolerance.

Table 1: Streaming Frameworks - Storm

Samza - https://samza.apache.org/

Origin LinkedIn Corporation – used to process tracking
and service log data and handle data ingest.

Data form Kafka binary message format – header and
variable length payload with gzip, snappy and
lz4 compression. Serialisation format agnostic.

Transport Uses Apache Kafka push-based messaging
system, models message flow as a distributed
commit log. Possible to use other transports;
intention is Kafka, for its durability properties.

Execution By default, Apache Hadoop YARN cluster
manager for resource allocation, distribution and
fault tolerance; Java Virtual Machine.

Processing Per message processing – data are processed as
received; functionality exists for batching but is
not default.

API Job-oriented MapReduce style API, Object-
Oriented. SamzaContainers hold processing
units called StreamTasks or WindowableTasks
that process Streams (partitioned message
streams).

Data model N/A

State model
and
resilience

Local state storage per task into key-value
database or transaction log, in memory or on
disk. Allows a stream to be replayed, if
necessary. Resilience achieved through cluster
manager and underlying message transports.

Table 2: Streaming Frameworks – Samza

Kafka Streams - http://docs.confluent.io/2.1.0-
alpha1/streams/index.html#kafka-streams

Origin Part of the Confluent platform for real-time
streaming ETL

Data form Data record in the form of a key-value pair

Transport Apache Kafka push based messaging

Execution Applications are built using the Kafka Streams
Java library, but require the existence of a Kafka
cluster of message brokers.

Processing Per message processing – data are processed as
received. Streams are represented as changelogs
of a table and a table as a snapshot of a stream.
Processing is partitioned on the topic of the data
record, if necessary.

API Computational Topology/ Graph oriented. A
Processor Topology allows Stream and Tables to
be processed by Stream Processors. There is a
Domain Specific Language called Kafka
Streams DSL that supplies these constructs and
also facilities for windowing, joining, and
aggregating streamed data

Data model N/A – general purpose

State model
and
resilience

State can be stored in memory or in a process-
local key-value datastore or other caches.
Resilience cascades from the fault tolerance and
scalability of the underlying Kafka software.

Table 3: Streaming Frameworks - Kafka Streams

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

933

Spark Streaming - http://spark.apache.org/streaming/

Origin University of California.

Data form Spark Resilient Distributed Dataset (RDD) with
Spark binary serialisation format or Kryo
serialisation.

Transport TCP sockets, files, Apache Kafka, ZeroMQ,
MQTT, Amazon Kinesis, Twitter, Flume and
Hadoop Distributed File System (HDFS) are the
transports provided by Spark Streaming, but it is
possible to use other transports.

Execution Can run standalone on a Spark cluster or the
Amazon Elastic Compute Cloud, but usually run
in production using Apache Hadoop YARN or
Mesos Hadoop cluster manager for resource
allocation, distribution and fault tolerance; Java
Virtual Machine, with wrappers for other
languages.

Processing Mini-batch processing – primarily data are read
from a stream and batched for use by functions
of the Spark Engine. Claims that this improves
the ability of Spark Streaming to handle the
imperfections of streams.

API Provides a MapReduce style API, functional
style. API provides a set of streaming related
Transformations over D-Streams (Discrete
Streams) including sliding windows, joins
(stream-to-stream and stream-to-dataset), map,
filter, reduce, union, count and transform
(allowing any Spark function to be applied).
Also provides an SQL and Dataframes API,
which converts streams to tables and processes
them using SQL operations

Data model N/A – general purpose

State model
and
resilience

Local metadata and data state storage to memory
by default and to HDFS if checkpointing is
enabled. Allows a stream to be replayed, if
necessary.

Table 4: Streaming Frameworks - Spark Streaming (Zaharia, et.
al., 2012)

This short discussion of some of the features of various data
streaming systems illustrates that there exist many approaches to
constructing and deploying such a system, with varying levels
of complexity and processing styles. It should be noted here that
these ecosystems and frameworks primarily target the Java
Virtual Machine.

1.4 Geospatial Data Streaming Implementations

Similarly to stream processing frameworks, there have been a
number of implementations of geospatial data streaming
frameworks over the last two decades. This section does not
enumerate the various efforts, rather it highlights a few
interesting exemplars.

PLACE (Mokbel, et. al., 2005) is one of the earliest
implementations of a such a system. It was used to unearth and
solve some of the fundamental issue of working with location in
a streaming, specifically a continuous query context. PLACE
introduced a number of pipelined spatio-temporal operators
(e.g. a continuous query to ascertain whether a one feature was

spatially inside another feature) and predicate-based windows
(i.e. data only enters/ exits a query window if it satisfies/ no
longer satisfies a predicate, such as a falling within a geographic
area).

ESRI GeoEvent Extension for ArcGIS Server (ESRI, 2016) is
ESRI's view on bringing streams of data to its large array of
geospatial processing capability. This approach utilises ArcGIS
Server and spatial analysis components of ESRI to act as a
stream processing (described as an event processing) engine.
Various streams of data such as sensor network output, social
media feeds, etc. pass messages to this engine via an assortment
of provided or custom developed Input Connectors. The
messages get structured as GeoEvents, are acted upon and then
streamed out via Output Connectors. This extension is aimed at
spatial ETL, pushing of data to web applications, status updates
in dashboard applications and real-time notification applications
such as geofencing applications. The primary primitive supplied
by this software is a Filter. Custom stream processors can be
built to exploit the wide variety of processing capability
available on the ESRI platform. ESRI provides what effectively
amounts to a streaming data management platform, as it allows
streams to be declared, controlled and accessed as a set of
Stream Layers, Containers and Services.

IBM InfoSphere is used by (Zhong, et. al., 2015) as an
infrastructure for supporting the deployment of a framework
called RISER. RISER utilises stream processing for ETL of
spatio-temporal data and as a spatial analysis engine performing
spatial functions (such as interpolation) over sensor network
data.

2. SWORDFISH SOFTWARE FRAMEWORK

2.1 Design Goals and Architecture

Swordfish is intended to provide a non-clustered stream
processing software framework for the Python programming
environment. Stream processing topologies, along which
messages are passed, provide the main Swordfish structure.
Nodes (processing units, sources and sinks) and edges (streams)
can be distributed across machines, but do not have to be. The
implication of a non-clustered architecture, e.g.. no default
reliance on a Hadoop cluster, is that Swordfish stream
processing topologies can be executed anywhere that Python
can be installed; from a sensor gateway to a Desktop, from a
single computer to a network of computers running in a cluster
or cloud environment.

Python provides rich functionality for geospatial work, ranging
from data translation libraries to machine learning and statistical
analysis libraries. Furthermore, Python is a dynamically typed,
general purpose programming language, providing great
flexibility. Thus, Swordfish can utilise a functional style of
programming, common to many of the streaming systems
described, yet provide utilities from object-oriented software
libraries. Swordfish processing topologies are dynamic,
meaning that new nodes and edges can be established at
runtime, rather than compiled into the topology.

The primary goal is to support the performance of spatio-
temporal access, transformation and analysis against geospatial
data streams from the kinds of systems illustrated previously,
such as Automated Identification System (AIS) positional
information from vessels, sensor networks monitoring
phenomena like radiation levels, to monitoring networks for
water and electricity usage, near real-time remote sensing data

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

934

product feeds and social media feeds. Swordfish has been
optimised in a number of places (data structures and streaming
function primitives) to enhance performance, primarily by
producing Cython code.

1.1.1 Common Data Model: Since Swordfish is primarily
concerned with geospatial data, we have developed a data
model based on a combination of ISO/ Open Geospatial
Consortium (OGC) Observations and Measurements (O&M)
(ISO, 2011), a conceptual schema principally for describing
location aware sensor-based observations and the Unidata
Common Data Model (CDM) (Unidata, 2014) that can be used
and understood by all components of the framework. In general,
Swordfish tries to translate data to this common data model as
rapidly as possible after receiving it from a source, thereby
enabling components to work seamlessly with the data, as soon
as they get sight of it. Messages are moved through the system
in a special high performance data structure, known as an
AttributeDictionary, which aids processors in searching,
indexing, extending and serialising the message payloads they
receive. AttributeDictionaries are serialised to MsgPack
structures by default when moved along streams and between
processes. Other serialisation formats such as JSON and Google
Protocol Buffers can also be used. Figure 1 shows a data item
representing a single message, in JSON form, that would be
passed through Swordfish:

“{'type': 'CF_SimpleObservation',
'phenomenonTime': '201509
14T11:58:58.649575', 'result':
{'variables': {'pulse_value': {'units':
'litres', 'dimensions': ['int']}, 'time':
{'units': 'isoTime', 'dimensions':
['time']}}, 'data': {'pulse_value': [500,
500, 500, 0, 500], 'time': ['201509
14T11:58:01.305564', '201509
14T11:47:06.808586', '201509
14T11:54:55.782008', '201509
14T11:43:58.603956', '201509
14T11:50:58.623827']}, 'dimensions':
{'time': 5}}, 'featureOfInterest':
{'geometry': {'type': 'Point',
'coordinates': [25.753, 28.28]}, 'type':
'Feature', 'properties': {'id': 'Top
Reservoir'}}, 'observedProperty': {'type':
'TimeSeries'}, 'parameter': {'id': 49999},
'procedure': {'type': 'sensor', 'id':
'45030171', 'description': 'Sensus HRIMei
linked to meter 14787486'}}“

Figure 1: Swordfish Common Data Model example

This message is used in the testing process, representing the size
and complexity of a typical message payload. Note the
featureOfInterest property; it is in a structure known as
GeoJSON (Butler, et. al., 2008), a de-facto community standard
format that is well understood by numerous geospatial software
packages.

2.1.1 Transport: To date, Swordfish is capable of read/write
streaming of data over a wide and growing range of message
transports, including Advanced Message Queueing Protocol
(AMQP), ZeroMQ, MQTT, Redis, websockets and several in-
memory structures. Adapters have been developed to harness
social media streaming platforms like Twitter.

2.1.2 Execution: Swordfish has no requirements for a
processing cluster to be present; it can run on a Desktop
computer as part of a normal Python application. As such, it
should be considered as a set of software libraries, implemented
according to application needs. Swordfish can be executed in a
distributed fashion using the Python code remoting platform
called RpyC (RpyC, 2013), but this is not as transparently
managed compared to the clustered systems. Inherently, as with
most message passing systems such as Swordfish, a level of
distribution is naturally possible through the use of message
broker protocols that provide part of several of the transport
implementations. By default, Swordfish uses in-memory
transports, but in practice, data are usually received from
transport mechanisms such as distributed message queues, e.g.
MQTT. Software bindings/ adapters to such queuing systems
need to be present for Swordfish to utilise them.

2.1.3 Processing: Swordfish is a message-oriented system
with per-message processing semantics – data are processed as
soon as received; no facility exists yet for batching of messages.

2.1.4 Application Programming Interface: Swordfish
supplies stream processing utility via a set of primitives for
describing nodes and edges in a stream topology and a set of
primitives for adding actual processing functionality. Nodes are
abstract StreamProcessors and would include Sources (e.g. a
subscription to an MQTT topic, a file, a database), Sinks (places
outside of the system where data can be passed to (e.g. database,
web service endpoint, websocket, message broker), and
concrete StreamProcessors (generic functionality executors).
These nodes are connected by different types of Streams, which
are components that abstract the underlying message transport
protocol and provide a callback mechanism for 1...n
StreamProcessors to receive messages off the stream, i.e. each
StreamProcessor registers a callback with a Stream.
StreamProcessors usually accept a function that will provide
application logic. Swordfish implements optimised
StreamProcessors that allow a MapReduce style of application
composition: Maps, Folds, Reduces, Joins, Filters. Maps are
generally used to transform or analyse each message and return
an output (e.g. reproject the spatial data in each message).
Folds are a specialised Map that allows a message to be
compared to some representation of state that is passed in at the
same time as the message , often the output of the previous
message (e.g. a check to see if each message is further east in
heading than the previous message). Reduce is a component
that aggregates or summarises data and outputs a result,
continuously or at certain time interval, count interval or other
delta in the data (e.g. union the geometries of the last 100
messages). Joins allow one stream of data to be joined with
another, following SQL style semantics of inner joins and left/
right outer joins (e.g. merging data from two streams based on
feature ID or spatial location). Filters utilise some function to
exclude data that does not meet some requirement from being
output downstream (e.g. discard features that are not within a
specific area-of-interest). A number of these operators will
operate in sliding or tumbling fashion over a count or time
window of the data on each stream; as described previously, it is
nigh on intractable for a process such as a spatial join to
maintain the state of all the messages it has ever had sight of.
At the time of writing, Swordfish maintains state only via in-
memory structures – no serialised state is managed.

2.2 Geospatial Functionality and Components

Geospatial utility is provided to Swordfish via a package of
programming functions that can be invoked and passed through
to Swordfish primitives like Maps, Folds, Filters etc. as
arguments. These programming functions are provided by a set
of well known Free and Open Source geospatial software

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

935

libraries, wrapped with code to specialise them for use in the
Swordfish streaming environment. All these programming
functions understand and can transform, query and populate
AttributeDictionaries of the common data model.

Swordfish spatial functionality is currently under active
development. At the time of writing, Swordfish provides:

 Functionality for indexing spatial data and comparing
messages to indexes (e.g. bounding box relationship
tests an k-nearest tests) This functionality is provided
by the Rtree (Rtree, 2016) Python wrapper of the
libspatialindex software.

 Computational geometry functions for binary
predicate tests, specifically whether feature
geometries on streams cross, intersect or fall within
other geometries (provided on the same stream, a
different stream or via some other source). This
functionality is provided via the Shapely (Shapely,
2016) Python wrapper of the GEOS computational
geometry engine.

 Cartographic transformations (e.g. projections),
provided by the Pyproj (Pyproj, 2016) wrapper of the
Proj.4 library

 Forward, inverse and distance geodetic calculations
(e.g. bearing, distance) also provided by Pyproj.

Some examples of how these functions could be deployed in
Swordfish may be useful. We have deployed Swordfish to
process AIS vessel data (hundreds of messages per second) and
data from sensor networks monitoring water and electricity
usage for large commercial sites, as well as radiation
concentrations around industrial facilities. Specific examples
include:

 Using Swordfish Filters with spatial indexes and
binary predicate tests to ascertain whether or not a
moving feature, such as a fishing vessel is present in
an area-of-interest such as a Marine Protected Area.

 Using Swordfish Fold to split up a data stream of
vessels from an AIS feed into individual streams of
vessel positions, and performing a fix on the
timestamp information in each positional message so
that trajectories can be calculated

 Using Swordfish Map to transform Google Protocol
Buffer structured data from radiation monitoring
sensors into the common data model, so that
interactive, real-time map visualisations could be
created and interpolations performed.

2.3 Swordfish Performance

This section gives an quick indication of the kinds of
throughputs that have been observed of Swordfish when
processed on a 24 CPU computer with 32 gigabytes of RAM,
running Ubuntu Linux version 14.04 and Python 2.7. Results
are from tests that utilise a payload as described in the Common
Data model section above. The message payload is a string
approximately 1 Kb in size, represented as an
AttributeDictionary, with each test repeated for 50 000
messages. In repeated tests, a portion of which are illustrated in
Table 5, Swordfish demonstrates some performance
characteristics as follows:

Test Throughput (average
messages per second)

Raw throughput of messages via
a StreamProcessor

> 660 000

In-memory streams > 300 000

Simple Filter, in-memory stream ~ 240 000

Simple Map, in-memory stream ~ 66 000

Simple Fold, in-memory stream ~ 16 500

Simple Reduce, in-memory
stream

~ 13 000

Simple Join, in-memory stream ~ 11 000

Distributed Map, 6 processes ,
in-memory streams, elapsed time
~ 10 seconds)

~ 6 350 per process
~ 30 000 for whole batch

Rtree bounding-box intersection
test Filter, in-memory stream

~ 7000

Format AIS messages to
Common Data Model, Swordfish
Map, MQTT stream transport

> 5000

Table 5: Indicative performance results

These are early results, but show that Swordfish can stream and
process high velocity data streams. The payload here is quite
large; numbers improve drastically for a small, non-spatial, no-
common data model message (e.g. a key-value pair of an integer
and a short string). Streaming systems often claim throughputs
of > 1 000 000 messages per second, but we feel the numbers
we illustrate are more likely to be found in practice when
dealing with geospatial data streams. It is notable that
throughput slows when geospatial functionality is applied; these
results nevertheless show Swordfish as capable of throughput of
an order of magnitude greater than our highest velocity streams
(merged Satellite and Terrestrial AIS receivers). The distributed/
multiprocessing capability of Swordfish may reduce any
throughput bottlenecks when it is necessary to scale the system.

3. SUMMARY AND FURTHER WORKS

In this article we discuss geospatial data stream processing and
introduce the Swordfish stream processing framework,
highlighting some of its spatial capabilities. We indicate that
Swordfish offers sufficient throughput capability to allow
application developers using Python to build online geospatial
systems for a number of potential use cases. A significant effort
is needed to expand the geospatial functionality (particularly to
move beyond computational geometry and indexing
functionality) and perhaps optimise it as necessary. Effort needs
to be undertaken to ensure that Swordfish is stable for long
running applications, though its early deployment in particular
use cases suggest it is reasonably stable. Swordfish is currently
limited to holding state in memory; further work may be
necessary to develop mechanisms to serialise state, especially in
use cases where recovery of the streaming topology state may
be necessary. A long term view of Swordfish development is the
provision of a streaming data management platform, (as is
provided by ESRI GeoEvent Extension, and the Confluent
platform). We are investigating the process for open-sourcing
Swordfish; organisational policies enforce a technology
evaluation process before open-source licenses can be applied
to software and code placed under an open-source management
model.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

936

REFERENCES

Aggarwal, C.C.(ed.), 2007. Data streams: models and
algorithms (Vol. 31). Springer Science & Business Media LLC,
233 Spring Street, New York, NY 10013, USA.

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J.,
2002. Models and Issues in Data Stream Systems. ACM PODS,
June 3-6 Madison, Wisconsin, USA. pp 1-16 .

Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T. and
Schmidt, C. 2008. The GeoJSON Format Specification.
http://geojson.org/geojson-spec.html (04 Mar. 2016)

ESRI, 2016. ArcGIS GeoEvent Extension for Server.
http://www.esri.com/software/arcgis/arcgisserver/extensions/geo
event-extension . (04 Mar. 2016)

FIF, 2013. Financial Information Forum Market Data Capacity
Charts June 2013 Data, 2013. Financial Information Forum.
https://fif.com/docs/2013_6_fifmd_capacity_stats.pdf (04 Mar.
2016)

ISO 19156:2011, Geographic information -- Observations and
measurements, 2011.
https://www.iso.org/obp/ui/#iso:std:iso:19156:ed-1:v1:en (04
Mar. 2016)

Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J.,
Balakrishnan, H, Cetintemel, U., Cherniak, M. , Tibbetts, R. and
Zdonik, A., 2008. Towards a Streaming SQL Standard.
PLVLDB 08, August 23-28, Auckland, New Zealand. pp. 1379-
1390

Kaisler, S., Armour, F., Espinosa, J.A. and Money, W., 2013,
January. Big data: Issues and challenges moving forward. In
System Sciences (HICSS), 2013 46th Hawaii International
Conference on (pp. 995-1004). IEEE.

Leskovec, J., Rajaraman, A., Ullman, J.D., 2014. Mining of
Massive Datasets 2nd Edition, Cambridge University Press,
New York. ISBN: 978-1-107-07723-2 pp 131-162

Mokbel, M.F., Xiong, X., Aref, W.C. and Hammad, M.A., 2005.
Continuous Query Processing of Spatio-Temporal Data Streams
in PLACE. GeoInformatica 9:4, Springer Science & Business
Media, Inc. pp. 343–365

Pokorný, J., 2006. Database architectures: Current trends and
their relationships to environmental data management,
Environmental Modelling & Software, 21(11). pp. 1579-1586.

Pyproj, 2016. Python interface to PROJ4 library for
cartographic transformations. http://jswhit.github.io/pyproj/ .
(04 Mar. 2016)

RpyC, 2013. RpyC, Remote Python Call.
https://rpyc.readthedocs.org/en/latest/ . (04 Mar. 2016)

Rtree, 2016. Rtree: Spatial indexing for Python.
http://toblerity.org/rtree/ . (04 Mar. 2016)

Shapely, 2016. Shapely. http://toblerity.org/shapely/ . (04 Mar.
2016)

Stonebraker, M., Çetintemel, U., and Zdonik, S. 2005. The 8
Requirements of Real-Time Stream Processing. SIGMOD
Record 34. pp. 42-47

Unidata, 2014: Unidata's Common Data Model Version 4.
Boulder, CO: UCAR/Unidata Program Center.
http://www.unidata.ucar.edu/software/thredds/current/netcdf-
java/CDM/ . (04 Mar. 2016)

Xiong, X., Mokbel, M.F., Aref, W.c., Hambrusch, S.E., and
Prabhakar, S., 2004. Scalable spatio-temporal continuous query
processing for location-aware services. In: Proceedings of the
16th International Conference on Scientific and Statistical
Database Management. Santorini Island, Greece. pp. 317-326

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S. and Stoica,
I., 2012. Discretized Streams: A Fault-Tolerant Model for
Scalable Stream Processing. Technical Report No. UCB/EECS-
2012-259, Electrical Engineering and Computer Sciences
University of California at Berkeley, USA.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
259.pdf

Zhong, X., Kealy, A., Sharon, G. and Duckham, M., 2015.
Spatial Interpolation of Streaming Geosensor Network Data in
the RISER System. In: Proceedings of the Web and Wireless
Geographical Information Systems: 14th International
Symposium, W2GIS , Grenoble, France. pp. 161-177

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-931-2016

937

http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/
http://toblerity.org/shapely/
http://toblerity.org/rtree/
https://rpyc.readthedocs.org/en/latest/
http://jswhit.github.io/pyproj/
https://www.iso.org/obp/ui/#iso:std:iso:19156:ed-1:v1:en
https://fif.com/docs/2013_6_fifmd_capacity_stats.pdf
http://www.esri.com/software/arcgis/arcgisserver/extensions/geoevent-extension
http://www.esri.com/software/arcgis/arcgisserver/extensions/geoevent-extension
http://geojson.org/geojson-spec.html

	1. Introduction
	1.1 General Data Streaming Background
	1.2 Geospatial Data Streaming Background
	1.3 Data Streaming Implementations
	1.4 Geospatial Data Streaming Implementations

	2. Swordfish Software Framework
	2.1 Design Goals and Architecture
	2.1.1 Transport: To date, Swordfish is capable of read/write streaming of data over a wide and growing range of message transports, including Advanced Message Queueing Protocol (AMQP), ZeroMQ, MQTT, Redis, websockets and several in-memory structures. Adapters have been developed to harness social media streaming platforms like Twitter.
	2.1.2 Execution: Swordfish has no requirements for a processing cluster to be present; it can run on a Desktop computer as part of a normal Python application. As such, it should be considered as a set of software libraries, implemented according to application needs. Swordfish can be executed in a distributed fashion using the Python code remoting platform called RpyC (RpyC, 2013), but this is not as transparently managed compared to the clustered systems. Inherently, as with most message passing systems such as Swordfish, a level of distribution is naturally possible through the use of message broker protocols that provide part of several of the transport implementations. By default, Swordfish uses in-memory transports, but in practice, data are usually received from transport mechanisms such as distributed message queues, e.g. MQTT. Software bindings/ adapters to such queuing systems need to be present for Swordfish to utilise them.
	2.1.3 Processing: Swordfish is a message-oriented system with per-message processing semantics – data are processed as soon as received; no facility exists yet for batching of messages.
	2.1.4 Application Programming Interface: Swordfish supplies stream processing utility via a set of primitives for describing nodes and edges in a stream topology and a set of primitives for adding actual processing functionality. Nodes are abstract StreamProcessors and would include Sources (e.g. a subscription to an MQTT topic, a file, a database), Sinks (places outside of the system where data can be passed to (e.g. database, web service endpoint, websocket, message broker), and concrete StreamProcessors (generic functionality executors). These nodes are connected by different types of Streams, which are components that abstract the underlying message transport protocol and provide a callback mechanism for 1...n StreamProcessors to receive messages off the stream, i.e. each StreamProcessor registers a callback with a Stream. StreamProcessors usually accept a function that will provide application logic. Swordfish implements optimised StreamProcessors that allow a MapReduce style of application composition: Maps, Folds, Reduces, Joins, Filters. Maps are generally used to transform or analyse each message and return an output (e.g. reproject the spatial data in each message). Folds are a specialised Map that allows a message to be compared to some representation of state that is passed in at the same time as the message , often the output of the previous message (e.g. a check to see if each message is further east in heading than the previous message). Reduce is a component that aggregates or summarises data and outputs a result, continuously or at certain time interval, count interval or other delta in the data (e.g. union the geometries of the last 100 messages). Joins allow one stream of data to be joined with another, following SQL style semantics of inner joins and left/ right outer joins (e.g. merging data from two streams based on feature ID or spatial location). Filters utilise some function to exclude data that does not meet some requirement from being output downstream (e.g. discard features that are not within a specific area-of-interest). A number of these operators will operate in sliding or tumbling fashion over a count or time window of the data on each stream; as described previously, it is nigh on intractable for a process such as a spatial join to maintain the state of all the messages it has ever had sight of. At the time of writing, Swordfish maintains state only via in-memory structures – no serialised state is managed.

	2.2 Geospatial Functionality and Components
	2.3 Swordfish Performance

	3. Summary and Further Works

