
HARVESTING, INTEGRATING AND DISTRIBUTING LARGE OPEN GEOSPATIAL

DATASETS USING FREE AND OPEN-SOURCE SOFTWARE

Ricardo Oliveiraa

Rafael Morenob

University of Colorado Denver, Department of Geography and Environmental Sciences, USA
a Ricardo.Oliveira@ucdenver.edu
b Rafael.Moreno@ucdenver.edu

Commission VII, SpS10 - FOSS4G: FOSS4G Session (coorganized with OSGeo)

KEY WORDS: Open Data; Cloud services; geospatial Open-Source Software; large data sets.

ABSTRACT:

Federal, State and Local government agencies in the USA are investing heavily on the dissemination of Open Data sets produced by

each of them. The main driver behind this thrust is to increase agencies’ transparency and accountability, as well as to improve

citizens’ awareness. However, not all Open Data sets are easy to access and integrate with other Open Data sets available even from

the same agency. The City and County of Denver Open Data Portal distributes several types of geospatial datasets, one of them is the

city parcels information containing 224,256 records. Although this data layer contains many pieces of information it is incomplete

for some custom purposes. Open-Source Software were used to first collect data from diverse City of Denver Open Data sets, then

upload them to a repository in the Cloud where they were processed using a PostgreSQL installation on the Cloud and Python

scripts. Our method was able to extract non-spatial information from a ‘not-ready-to-download’ source that could then be combined

with the initial data set to enhance its potential use.

1. INTRODUCTION

The availability and accessibility to Open-Data sets has

exploded in recent years caused primarily by the ease that

organizations now have in exposing such datasets to citizens,

and also by the increasingly interest of the general public to

explore these datasets. However, some barrier still exists, such

as not all datasets are readily available for some custom

applications that require integration of information from

multiple data sets. It was with this challenge in mind that we

explored ways to integrate information from different open data

sets to facilitate new uses of these data.

For our tests we chose two data sets. First, the parcel data set

provided freely by the City and County of Denver

(http://data.denvergov.org/dataset/city-and-county-of-denver-

parcels). This dataset contains 224,256 records corresponding

to each parcel in the city and it is part of a larger collection of

open data offered by the city through their Open Data Catalogue

(http://data.denvergov.org/). It contains numerous attributes of

interest and it can potentially be used for a broad range of

applications. Second, we selected the tax property records

provided by the Denver Property Taxation and Assessment

System. This system provides a wide range of information for

each parcel in the city (224,256 of them). We identified that

some pieces of information available through the tax property

system are not present in the parcels data set available through

the city’s Open Data Catalog.

2. GOAL

 Our goal was to demonstrate the use of Free and Open-Source

Software (FOSS) to harvest, integrate, and distribute a custom

version of the parcel data set with added information extracted

from the Denver Property Taxation and Assessment System.

Although there are multiple sophisticated ways to achieve this

goal, we concentrated in using mature well-known FOSS and

procedures that are as simple as possible with the aim of

demonstrating that users with a minimal set of skills can

develop similar applications to fulfil their specific needs.

3. METHODS

We used two FOSS: PostgreSQL-PostGIS and Python. Both of

these FOSS are mature, well-document and have multiple free

resources to learn them. PostgreSQL-PostGIS was used for data

storage and management providing a solid and flexible base to

support any distribution system that we may decide to use to

share our data. For data processing we decided to use Python

given its flexibility and power.

The first step was to test that through simple procedures that

both data sets (parcel data and tax records) can be integrated. To

do this, we created a free version of an Amazon Web Services

Relational Database Service (AWS-RDS)

(https://aws.amazon.com/rds/) that uses PostgreSQL as its

engine. This PostgreSQL instance was enabled with the

PostGIS spatial extension (http://postgis.net/). The city’s parcel

data in ESRI shapefile was downloaded to a local computer,

and the PostGIS shp2pgsql loader utility

(http://postgis.net/docs/manual-1.3/ch04.html#id435700) was

used to convert the shapefile to a spatial table in the

PostgreSQL-PostGIS instance running in the AWS-RDS. The

city parcel’s unique ID (known as the PIN number) exists in

both the tax records and the parcels table and we used it to test

that the records from both tables are correctly matched. A

Python script was written to: a) connect to the PostgreSQL-

PostGIS instance running in AWS-RDS; b) create and execute a

SQL statement that retrieves all the parcel’s unique ID (known

as the PIN number) from the parcels table just created in the

previous step; c) structure an URL for the specific entry at the

Denver Property Taxation and Assessment System

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-939-2016

939

mailto:Ricardo.Oliveira@ucdenver.edu
Rafael.Moreno@ucdenver.edu
http://data.denvergov.org/dataset/city-and-county-of-denver-parcels
http://data.denvergov.org/dataset/city-and-county-of-denver-parcels
http://data.denvergov.org/
https://aws.amazon.com/rds/
http://postgis.net/
http://postgis.net/docs/manual-1.3/ch04.html#id435700

corresponding to each parcel; d) then the script parses the

page’s HTML code to extract any attribute of interest for each

parcel registered in the tax system (e.g. “chain of ownership”

that does not exist in the parcel data set), this approach is

referred to as “Web Scrapping” (for definition see

https://en.wikipedia.org/wiki/Web_scraping); e) finally, the

information scrapped from the tax system is inserted into a

record in a new PostgreSQL table created in the AWS-RDS. At

this point we have two tables in the AWS-RDS: the city parcels

original table and the table containing the selected attributes

from the original parcels table and the attributes and records

scrapped from the tax system website. Figure 1 illustrates the

process just described.

Figure 1. An overview of our methodology.

4. RESULTS

The test of matching of records between the parcels table and

tax records table was successful. We tested scrapping diverse

attributes from the tax system website and joining them to

selected attributes and records from the city parcels table to

create custom tables. Performance wise we found that the

biggest constraint was how fast the tax system website could be

accessed to retrieve the HTML code rendering the page

corresponding to each parcel record. In our first tests, we let the

Python script request the HTML of each page without delay,

this resulted to be problematic as the website was unable to

process the requests fast enough. After two hours of processing

we cancelled the process. We found that adding as part of the

script a small delay of 5 second between requests was enough to

avoid this issue.

The information in the custom tables resulting from the

processes described above are stored in the AWS-RDS and can

be accessed by any software or GIS system that can connect to a

database management system in a network. This would allow

end users to easily join the new custom tables with any other

information that have has a common unique identifier (such as

the PIN number). For example, QGIS offers all required drivers

to connect to PostgreSQL hosted locally or through a network.

Our Python script consisted of approximately 45 lines of code,

most of them are simple adaptations of code found in well-

known and well-documented free code libraries. The process to

set-up a PostgreSQL database in the Cloud, such as in AWS as

done here, has becomes much more user friendly and costs

continue to decrease. Most Cloud services offer free ‘tiers’, our

AWS RDS was in fact one of such free tiers, that allow for

learning and also prototyping.

The FOSS, methods, and Cloud infrastructure here described

are only one of several no-cost or low-cost options for

combining information from Open Data repositories and made

them broadly available through the Internet. Our focus was to

find simple and reliable software and methods that are easy to

learn and implement by users with basic technological skills.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-939-2016

940

https://en.wikipedia.org/wiki/Web_scraping

