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ABSTRACT: 
 
Lichens are the dominant autotrophs of polar and subpolar ecosystems commonly encrust the rock outcrops. Spectral mixing of 
lichens and bare rock can shift diagnostic spectral features of materials of interest thus leading to misinterpretation and false 
positives if mapping is done based on perfect spectral matching methodologies. Therefore, the ability to distinguish the lichen 
coverage from rock and decomposing a mixed pixel into a collection of pure reflectance spectra, can improve the applicability of 
hyperspectral methods for mineral exploration. The objective of this study is to propose a robust lichen index that can be used to 
estimate lichen coverage, regardless of the mineral composition of the underlying rocks. The performance of three index structures of 
ratio, normalized ratio and subtraction have been investigated using synthetic linear mixtures of pure rock and lichen spectra with 
prescribed mixing ratios. Laboratory spectroscopic data are obtained from lichen covered samples collected from Karrat, Liverpool 
Land, and Sisimiut regions in Greenland. The spectra are then resampled to Hyperspectral Mapper (HyMAP) resolution, in order to 
further investigate the functionality of the indices for the airborne platform. In both resolutions, a Pattern Search (PS) algorithm is 
used to identify the optimal band wavelengths and bandwidths for the lichen index. The results of our band optimization procedure 
revealed that the ratio between R894-1246 and R1110 explains most of the variability in the hyperspectral data at the original laboratory 
resolution (R2=0.769). However, the normalized index incorporating R1106-1121 and R904-1251 yields the best results for the HyMAP 
resolution (R2=0.765). 
 
 

1. INTRODUCTION  

Lithological mapping using remote sensing depends, in part, on 
the identification of rock types by their spectral characteristics. 
The potential for rock type and mineral identification benefits 
from an understanding of the way in which surface processes 
modify those spectral characteristics. One of the important 
factors which merit consideration is the presence of organic 
growth, such as lichens on the rock surface.  
 
Lichens can be found from arctic and subarctic to tropical 
regions and are particularly well adapted to extreme 
environmental conditions. In arctic regions of the world, lichen 
cover can be so extensive that only a small portion of the rock's 
surface is exposed. Consequently, any acquired imagery and the 
related brightness values represent some unknown combination 
of rock and biologic material. More specifically, the spectrum 
of a lichen covered rock surface can be significantly different 
from the spectrum of bare rock, depending on the spectral 
contrast between the lichen and the rock substrate. The presence 
of lichen can increase, decrease or have little effect on the 
spectral reflectance of the rock surface (Satterwhite et al., 
1985).  
 
Much of the existing knowledge on the reflectance spectra of 
lichens corresponds to the spectral resolution of multispectral 
airborne and spaceborne imaging systems such as Landsat MSS 
and TM sensors (Ager and Milton, 1987; Leverington and 
Moon, 2012) and Airborne Thematic Mapper (ATM) (Grebby 
et al., 2014). Evidently, more information is potentially 

available from high-resolution spectra of hyperspectral imagery.  
Hyperspectral remote sensing systems are becoming more 
readily available, increasing the ability to map different land-
cover units through end-member and spectral unmixing 
analyses (Rogge et al., 2006; Rogge et al., 2007; Sheng et al., 
2015). Such high resolution dataset provides more flexibility for 
optimal selection of wavebands for discriminating between 
different land-cover types and lichens (Laakso et al., 2015). 
However, rather limited hyperspectral data are currently 
available for studies of arctic and subarctic lichens. The first 
major data set was published by Rivard and Arvidson (1992), 
who conducted field observations over the range 450 to 2400 
nm to obtain in situ spectra of different exposed lithologic units. 
The survey included measurements of gneiss, granite, 
anorthosite, and amphibolite rocks on the west coast of 
Greenland. Their research illustrated that the spectra of bare 
amphibolite and tonalite substrates were significantly altered by 
lichen cover as they were rather flat and featureless. Rollin et al. 
(1994) investigated the influence of weathering and lichen cover 
on the reflectance spectra of granitic rocks over visible and 
infrared wavelengths. They concluded that all the lichen 
affected spectra showed identical diagnostic absorption features 
in the shortwave infrared region (SWIR). They further 
suggested that these features, which were found to occur only in 
the spectra of lichen covered surfaces, were potentially useful 
for lichen identification by spectral measurements from satellite 
or airborne sensors. 
 
Despite analyses focusing on spectral properties of lichens and 
rock-encrusting lichens, little attention has been paid to model 
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lichen effects and to minimize their effect by mapping varying 
lichen abundances on rock exposures. Ager and Milton (1987) 
suggested band ratios of TM3:TM4 and TM5:TM2 from 
laboratory modelling to minimize lichen effects in TM images. 
 
Bechtel et al. (2002) suggested a set of spectral indices to 
discriminate lichens and a set of spectral indices to guide the 
selection of a single lichen end-member for use in the Spectral 
Mixture Analysis (SMA) of rock and lichen. Discrimination of 
different lichen species was conducted by using ratios of 
reflectance at 400/685 and 773/685 nm. An index using the 
band ratios 2132/2198 and 2232/2198 nm showed the similarity 
of lichen spectra in the SWIR and a distinguishing feature 
between rocks with hydroxide  bearing minerals and lichens. 
However, it was emphasized that not all lichen species is likely 
to be distinguished using this approach as the study was based 
on a limited number of lichen samples (three grey – black 
crustose species). It was concluded that a much larger number 
of lichen samples, from various study sites, should be measured 
and compared using the ratio of reflectance at 400/685 nm 
against 773/685 nm to evaluate the ability to separate lichens by 
species at these wavelengths. 
 
A recent study carried out by Li et al. (2015) showed that rock 
substrates covered by lichens are characterized by multiple 
lichen related absorption and reflection features. They 
demonstrated that lichen growth is one of the major factors 
controlling spectra of Tenerife lava surfaces and therefore tested 
several spectral indices to estimate lichen coverage at both site 
and spot scales. Their focus was in particular on the increase in 
reflectance from 680 to 1320 nm and the decreases from 1660 
to 1725 nm and from 2230 to 2300 nm and their results showed 
that indices using 1660 and 1725 nm generally performed 
better. They further discussed that 2230 and 2300 nm have a 
very strong correlation with the lichen coverage but the use of 
wavelengths in the SWIR region from remotely sensed 
platforms is overshadowed by the high sensitivity to varying 
atmospheric conditions. As normalization helps to minimize the 
effects of variable illumination conditions and no differences 
between the ratio and normalized difference indices using 1660 
and 1725 nm was observed in their study, they concluded that a 
normalized difference index using 1660 and 1725 nm is better 
in characterizing the relationship between spectral signatures of 
lava surfaces and surface lichen coverage. The lichen index was 
then applied to Hyperion imagery of their study area for 
mapping lichen coverage on lava surfaces. 
 
This study was motivated by the fact that the presence of 
lichens may affect the interpretation of mineralogy. 
Deconvolution of the effect of spectral mixing of rocks and 
lichens through spectral unmixing methodologies is thus an 
essential step for improving the applicability of hyperspectral 
methods for mineral exploration. Our objective is to identify a 
robust lichen index for the deconvolution of lichen and rock 
mixtures using a pattern search algorithm (PS). We have 
selected the 350–2500 nm spectral range because of its 
relevance to many current hyperspectral remote sensing systems 
and that much of the analysis of hyperspectral data for 
geological application is based upon the detection and 
identification of important OH features that occur in minerals 
within this range. The results of this study are expected to have 
a significant implication for the analysis of satellite or airborne 
remote sensing imagery. The proposed infrared ratios applied to 
the analysis of hyperspectral data can provide a simple means to 
reduce the effect of varying lichen abundances covering rock 
exposures. Such information is vital to the interpretation of 
remote sensing data acquired in areas having abundant lichen-

covered outcrops. In this context, changes induced by different 
percentage of lichen cover in the spectra shape of common rock 
forming minerals have been simulated using laboratory 
spectroscopic data obtained from lichen covered samples 
collected from Karrat, Liverpool Land and Sisimiut areas in 
Greenland. Synthetic linear mixtures of pure rock and lichen 
spectra with prescribed mixing ratios are then examined in order 
to investigate the performance of three index structures of ratio, 
normalized ratio and subtraction. Location and width of 
absorption features are parameters that were examined during 
this study for both laboratory spectroscopic resolution and 
HyMAP resolution.  
 

2. STUDY AREA 

Greenland is the largest island in the world, surface of which is 
covered by about 80 per cent of the Inland Ice. The largest part 
of the ice-free area is made up of crystalline rocks of the 
Precambrian shield. The land surface of Greenland is a glaciated 
terrain, often with pronounced topography in places displaying 
alpine landforms with partial ice and snow cover. The action of 
glaciers and ice sheets during and since the Quaternary 
glaciations resulted in extensive areas of well exposed rocks. 
However, the well exposed geology is to a variable extent 
covered by the crusts of lichens which complicate the spectral 
mapping of the minerals and lithologies. For the purpose of this 
study lichen bearing rock samples were collected from 
Liverpool Land (Central East), Karrat (Central West), and 
Sisimiut (South West) areas in Greenland. 
 
The geology of central East Greenland is dominated by the N–S 
orientated Caledonian Fold Belt formed by the collision 
between Laurentia and Baltica 465–400 million years ago 
(Higgins et al., 2004). Liverpool Land forms a c. 3500 km2 
horst of Caledonian crystalline rocks separated from the post-
Caledonian Jameson Land sedimentary basin to the west by a 
major N–S-oriented fault zone. The crystalline complex of 
North Liverpool Land is composed of Precambrian, marble 
bearing metamorphic rocks and granites–quartz-monzonites of 
Caledonian or Neoproterozoic age belonging mainly to the 
Hagar Bjerg thrust sheet (Coe and Cheeney, 1972). The 
Monzonite sample studied in this paper has been collected from 
this region. 
 
The Karrat group in west Greenland comprises three main 
formations i.e. the Mârmorilik, Qeqertarssuaq, and Nukavsak 
formations (St-Onge et al., 2009). The Qeqertarssuaq Formation 
is a metasedimentary sequence consisting of semipelitic to 
pelitic schist, quartzite, and quartzitic schist (Escher 
and Pulvertaft, 1976). This area has been selected to collect the 
quartzite sample (Figure 1).  
 
Southern West Greenland hosts an alkaline province with a 
variety of ultramafic alkaline rocks, including swarms of dykes 
traditionally described as kimberlites and lamproites (Larsen 
and Rex, 1992; Jensen et al., 2002). The region hosts several 
clusters of kimberlitic dykes and sills (more than 200 outcrops), 
which appear to be controlled by preexisting joint systems or 
concordant with the enclosing gneiss. A large number of dykes 
are located in the vicinity of the Sarfartoq carbonatite complex 
(Larsen and Rex, 1992; Jensen et al., 2003). Our Kimberlite, 
Lamproite, Carbonatite, Fenite, Granite and Gneiss samples 
were collected from this region (Figure 1). 
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Figure 1. Geology Map of Greenland at scale 1:500.000 and 
the Locations of the Collected Samples  

 
3. METHODOLOGY 

3.1 Laboratory Spectral Measurements  

All spectral measurements were made with a FieldSpec®3 
HiRes (hereafter referred to ASD) Spectroradiometer that 
records 2151 channels within the 350-2500 nm wavelength 
range with a spectral resolution of 3 nm @ 700 nm, 8.5 nm @ 
1400 nm, 6.5 nm @ 2100 nm and a sampling interval of 1.4 nm 
@ 350-1050 nm and 2 nm @ 1000-2500 nm.  
 
All measurements were conducted using a contact probe device 
which contains its own light source. Use of a contact probe 
provides consistent illumination conditions during data 
acquisition and ensures measuring the spectra of pure patches of 
lichen species. Radiance values were converted to reflectance 
values by calculating the ratio of the radiance of the sample to 
the radiance of a 99% reflective reference panel (Spectralon, 
SRT-99-050, Labsphere, North Sutton, NH, USA) under the 
same illumination and viewing conditions (Bruegge et al., 
1993). Dark current and white reference measurements were 
repeated for each rock sample. Each spectrum acquired in 
laboratory consists of 25 individual measurements recorded 
consecutively and averaged by the ASD instrument.   
 
Two sets of measurements were collected from lichen-free 
weathered surfaces of each rock sample and from lichens on 
weathered surfaces. The first set of measurements was collected 
from 5 lichen-free, weathered surfaces of each sample. The 
second set of measurements was acquired from lichens of 

different colours to account for possible inter-species spectral 
variation for each sample. The measured surface in each case is 
approximately 10 mm determined by the diameter of the contact 
probe. These measurements were used to generate synthetic 
mixtures (Section 3.2), and subsequently identify the optimal 
band wavelengths and bandwidths for the lichen index (Section 
3.3).  
 
3.2 Modelling the Impact of Lichen on the Spectra of the 
Rock Substrate Using Synthetic Linear Mixture Analysis  

Due to the presence of lichen cover at length scales of a meter 
or greater, the majority of pixels in the remotely sensed imagery 
will encompass mixtures of bare rock/soil and lichen. To 
quantify the effects of sub-pixel lichen cover on the spectra of 
the lithologies, and assess its impact on remotely sensed 
mapping, synthetic reflectance spectra were generated by 
mixing the representative spectra of the lithologies with the 
spectra of common lichen types using a spectral mixing 
technique. The principle of spectral (un)mixing is that the 
resulting spectrum for an image pixel containing a mixture of 
several distinct materials will be a linear combination of their 
signatures (Kruse et al., 1993). The assumption of linear 
mixture of lichens and rock substrate is reliable as lichens 
prevent transmission of light to the underlying rock substrate 
(Ager and Milton, 1987; Bechtel et al., 2002).   
 
ASD spectral measurements of the lichen-covered surfaces were 
averaged separately for each rock type, to create a single 
spectral representation of lichen for specific rock substrates (Śr), 
(Figure 2). The same procedure was repeated for each rock type 
to produce a representation of the lichen-free weathered 
surfaces (Sr). These averaged spectra were then used to generate 
linear spectral mixtures of lichen and rock for each substrate 
with 1% intervals: 
       
Rb = f Srb + (1- f) Śrb                     (1) 
 
Where Srb = reflectance spectrum of rock type r at band b    

Śrb = reflectance spectrum of lichen type r at band b 
f = relative proportion of lichen 

 
Subject to:  
 
f	∈ {0.01, 0.02, 0.03, …, 0.99, 1}      (2)
   
3.3 Lichen Spectra Characteristic 

Lichen reflectance increases steadily in the range 700-1400 nm 
and remains high at longer wavelengths (Figure 2). This steady 
increase is distinctly different from the reflectance curve of 
vascular plants, characterized by an abrupt increase from the 
visible to the near infrared and decreases slowly from 800 to 
1300 nm (Ager and Milton, 1987). 
 
Dark colour lichens have low reflectance in the visible part of 
the spectrum and show a gradual increase in reflectance at 
longer wavelengths, reaching a maximum around 1860 nm. The 
absorption feature near 1445 nm is caused by water in the 
lichens (Bechtel et al., 2002). Three broad absorption features 
near 1730, 2100, and 2300 nm, are attributable to the presence 
of cellulose in lichen (Ager and Milton, 1987; Bechtel et al., 
2002; Rees et al., 2004). A distinct feature near 2350 nm also 
exists in some rock samples in this study and cannot be 
uniquely associated to lichens. The absorption in 1730 nm 
occurs with another absorption feature at approximately 2080 
nm (Bechtel et al., 2002).  
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Figure 2. The averaged ASD spectral measurements used as 
representation of pure lichen spectra   

 
3.3.1 Optimization of Lichen Index: In order to estimate 
the lichen coverage, the performance of three different index 
formulations is analysed: 
 	
𝐼𝑁𝐷𝑋'()* = 𝑅)-.)/ − 𝑅)1.)2 																																																(3)  
 
𝐼𝑁𝐷𝑋34*56 =

789:8;
78<:8=

																		      (4) 
	

𝐼𝑁𝐷𝑋>63? = 789:8;.78<:8=
789:8;@78<:8=

																																													   (5) 

 
Where Rb1-b2 and Rb3-b4 are the average reflectance of the 
spectral mixture from band b1 to b2 and from band b3 to b4, 
respectively. Figure 3 depicts two of the samples used for 
analysis, one with a 0.68 fraction of lichen, and the other 
without any lichen. In this case and given the b1 to b4 values, a 
simple INDXratio can be calculated for each spectrum by 
averaging the reflectance from 894 to 1247 nm, and dividing 
this value by the reflectance in 1111 nm.  

 

Figure 3. Schematic representation of the averaging concept 
used for index calculations 

 
Our aim is to find band wavelengths [b1, b2, b3, b4] in a way 
that INDX can be used for estimation of the corresponding f for 
the spectra. However, since we know that the values of INDX 
might also need rescaling to directly estimate f— which always 
has a value between 0 and 1— we introduce rescaling 
coefficients p1 and p2 as well:  

𝐼𝑁𝐷𝑋'()* = 𝑝-. 𝑅)-.)/ − 	𝑅)1.)2 + 𝑝/    (6) 

𝐼𝑁𝐷𝑋34*56 = 𝑝-.
789:8;
78<:8=

+ 	𝑝/     (7) 

𝐼𝑁𝐷𝑋>63? = 𝑝-.
789:8;.78<:8=
789:8;@78<:8=

+ 𝑝/     (8) 

 
We generated a total number of 1010 mixed spectra from 
various rock types and with known f values (section 3.2). These 
samples are used as training and validation datasets to find the 
optimal values for b1, b2, b3, b4, p1, and p2, in a way that the 
Root Mean Squared Error (RSME) in estimating the respective f 
is minimized. The objective function for such optimization 
problem can thus be written as: 

minZ()1,)2,)3,)4,J1,J2) =
(LM.NOPQM)2R

MS1
O

   (9) 

 
Subject to: 
 
i = {1, 2,…, N}        (10) 
 
b2 ≥ b1       (11) 
 
b4 ≥ b3       (12) 
 
350 ≤ b1, b2, b3, b4 ≤ 2500     (13) 
 
Where Z = RMSE of the lichen fraction estimation to be     

minimized 
 fi = expected lichen fraction for each sample i 
INDXi = lichen fraction estimate for sample i which 
can be calculated based on INDXsubt, INDXratio, or 
INDXnorm 
N = total number of samples 

1445 1730 2100 2300 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B7-973-2016

 
976



 

Indices b1 b2 b3 b4 p1 p2 R2 RMSE 
INDXsubt 894 1237 1116 1117 -35.7486 0.0038 0.7455 0.1472 
INDXratio 894 1247 1110 1110 -9.4092 9.4481 0.7696 0.14 
INDXnorm 883 1258 1114 1114 -16.8114 0.0505 0.7666 0.1409 

Table 1. Optimized band wavelengths and scaling coefficients for three different indices (original resolution) 
 

Indices b1 b2 b3 b4 p1 p2 R2 RMSE 
INDXsubt 0.92 1.208 1.106 1.121 -36.2673 -0.0032 0.736 0.1496 
INDXratio 0.846 1.208 0.983 1.251 -4.7257 4.7187 0.726 0.1525 
INDXnorm 1.106 1.121 0.904 1.251 19.9579 0.0552 0.765 0.1413 

Table 2. Optimized band wavelengths and scaling coefficients for three different indices (HyMAP resolution) 
  
Obviously, the optimal parameter values would be different for 
INDXsubt, INDXratio, and INDXnorm and the optimization 
procedure is run separately for each formulation, and the results 
are compared.  
 
The optimization problem described above cannot be solved 
though gradient-based methods as Z is a discrete, nonlinear 
function. Here, we used a direct search approach, namely 
Pattern Search algorithm (PS), to find the optimal parameter 
values. PS is a sequential search procedure for finding the 
optimal value of nonlinear functions with nonlinear constraints 
for which the gradients of the function and the constraints are 
either unknown or unreliable (Kolda et al., 2003). The search 
starts with a local exploration in small steps in the multi- 
dimensional space around the starting point, called mesh. If the 
exploration is successful in finding a more optimal function 
value, the exploration process continues from around the newly 
found location; if it fails the step-size is reduced. The process of 
search continues until the algorithm reaches its termination 
conditions (Li and Rahman, 1990). The termination conditions 
for the algorithm can be a certain threshold on the size of the 
steps, or the number of iterations, whichever occurs first. There 
are a number of implementations of the pattern search algorithm 
available through MATLAB’s pattern search solver. The two 
search algorithms used in this study are generalized pattern 
search (GPS) algorithm as the poll method, and the mesh 
adaptive search (MADS) algorithm as the complete search 
method. 
 

4. RESULTS AND DISCUSSION 

4.1 Laboratory Spectroscopic Resolution 

The band wavelengths and scaling coefficients are identified by 
PS. Table 1 presents the optimized coefficients for each 
function structure, along with the coefficient of determination 
(R2) and RMSE of the estimated lichen fractions. The 
estimation errors as well as the approximate wavelengths of the 
bands for the three indices are found to be very similar for the 
indices. The most significant difference between the three is 
observed for the optimized scaling coefficients p1 and p2. 
 
Figure 3 illustrates the validation of the optimized INDXratio 
through a linear regression between the expected lichen 
fractions and the indices calculated from the spectra (n=1010, 
R2=0.7695, RMSE=0.14). The optimization algorithm has been 
relatively successful in concentrating the data-points associated 
with various rock-types and with different lichen cover fractions  
around the 1:1 line, thus establishing a fairly linear relationship 
between the proposed index and the lichen coverage. 
 
 
 

 

Figure 3. The linear fit between the optimized INDXratio and the 
expected f values. 

 
With regards to the deficiencies of the index, the lichen cover is 
underestimated for felsic gneiss, gneiss, quartzite, and fenite for 
mixture ratios of more than 0.3 (Figure 3). Nonetheless, it must 
be kept in mind that given the different spectral responses of 
various rock types, a trade-off is expected between the 
robustness of the index in terms of its applicability irrespective 
of the substrate composition on one hand, and the performance 
for the deconvolution of specific mixtures on the other. By 
narrowing the training dataset to a limited number of rock types, 
the algorithm can be allowed to converge around the specific 
wavelengths that are sensitive to the presence of lichen on a 
given rock surface. However, this will result in the loss of 
sensitivity, or false estimates for the remaining rock types. 
 
4.2 Comparison with HyMAP Resolution 

Synthetic spectral mixing analysis enables the theoretical effects 
of lichen on the spectra of the lithologies to be studied. The 
relevance of the modelled effects above with respect to those in 
the HyMAP resolution was determined by computing the 
response of the spectra-derived band ratio, normalized ratio and 
subtraction for each lithology. 
 
To investigate the performance of the indices as when using the 
HyMAP airborne instrument, the mixture samples were first 
resampled to HyMAP resolution (with 126 bands from 350 to 
2500 nm). Subsequently, the same optimization procedure was 
run for the three index structures, this time with a minor 
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modification in Eq. 13 based on HyMAP band wavelengths. 
The optimized coefficients and the goodness of fit are presented 
in Table 2, with INDXnorm showing slightly better results when 
compared to INDXsubt and INDXratio. Overall, the RMSE values 
for the three indices are not substantially different compared to 
those of the original-resolution dataset in Table 1. 
 

5. CONCLUSIONS 

The potential for lithological mapping in arctic terrains will 
benefit from high spectral resolution offered by imaging 
spectrometry systems. However, interpretation of such data will 
also require analysis of subpixel mixture of rock and lichen 
elements. Different percentage of lichen coverage can mask 
and/or shift the diagnostic spectral features of materials of 
interest causing erroneous rock type classification. This study 
elucidates the impact of lichen cover on spectral recognition of 
the lithologies through synthetic linear spectral mixing analysis. 
The aim of the study was to identify spectral indices that can 
directly reflect the mixture ratio of the rock and lichen in 
hyperspectral data. To achieve this, a number of index 
structures were prescribed to an optimization algorithm, which 
was tasked to find the best values for the location of the bands 
along the reflectance spectra (350-2500 nm). 
 
The results of this study have important implications for the 
geological analysis of airborne/spaceborne hyperspectral data 
where rock encrusting lichens partially obscure exposed 
bedrock.  
 
The proposed indices proved to be robust to the type of the 
substrate rock and were all able to estimate the lichen coverage 
with acceptable, albeit varying, levels of error. Although the 
indices could be further optimized to estimate the lichen 
coverage fractions for specific rock lithologies with higher 
accuracy levels, the proposed indices are remarkable in the fact 
that their performance is independent of the type of the substrate 
rocks. 
 
Furthermore, the proposed methodology for the index 
optimization has the advantage of not requiring a priori 
knowledge about the exact effects of lichens—or any other 
substance—on the reflectance of the mixtures. Instead, this 
information is implicitly extracted, via an automated trial and 
error process. Therefore, besides the lichen-covered rocks, this 
technique can be beneficial for identification of sensitive bands 
and indices for deconvolution of any mixture spectra, whether 
as in this case synthetic or obtained directly from the mixture 
samples. 
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