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ABSTRACT:

In recent years, the methods for detecting structural changes in time series have been adapted for forest disturbance monitoring using
satellite data. The BFAST (Breaks For Additive Season and Trend) Monitor framework, which detects forest cover disturbances
from satellite image time series based on empirical fluctuation tests, is particularly used for near real-time deforestation monitoring,
and it has been shown to be robust in detecting forest disturbances. Typically, a vegetation index that is transformed from spectral
bands into feature space (e.g. normalised difference vegetation index (NDVI)) is used as input for BFAST Monitor. However, using
a vegetation index for deforestation monitoring is a major limitation because it is difficult to separate deforestation from multiple
seasonality effects, noise, and other forest disturbance. In this study, we address such limitation by exploiting the multi-spectral band
of satellite data. To demonstrate our approach, we carried out a case study in a deciduous tropical forest in Bolivia, South America. We
reduce the dimensionality from spectral bands, space and time with projective methods particularly the Principal Component Analysis
(PCA), resulting in a new index that is more suitable for change monitoring. Our results show significantly improved temporal delay in
deforestation detection. With our approach, we achieved a median temporal lag of 6 observations, which was significantly shorter than

the temporal lags from conventional approaches (14 to 21 observations).

1. INTRODUCTION

Near real-time change monitoring has important application in
forest management. Open access to satellite data (e.g Landsat
and Sentinels) enables for near real-time detection of forest dis-
turbance using advanced time series analysis methods (Banskota
et al., 2014; Forkel et al., 2013; Kuan and Hornik, 1995). Most
of the recent studies on near real-time forest disturbance monitor-
ing have applied BFAST Monitor (Verbesselt et al., 2012), which
detects forest disturbances by identifying a historical period, fit
a linear regression model for historical time series, and monitor
change in newly acquired observation either with a cumulative
sum (CUSUM) or moving sums (MOSUM) process of the differ-
ences between new data and model predictions. Studies applying
BFAST monitor mostly use normalised difference vegetation in-
dex (NDVI), normalised difference moisture index (NDMI), and
enhanced vegetation index (EVI). These indices contrast the ab-
sorption and reflection properties of vegetation between near or
short-wave infrared bands and visible bands.

Monitoring deforestation on single vegetation index has several
limitations: 1) the harmonic model might not be sufficient to cap-
ture the complex seasonality in tropical forest, 2) one model is
not sufficient for spatially heterogeneous tree species. 3) defor-
estation can be hard to separate from drought, other disturbances,
and noise, 4) training data is required to identify if the detected
change is deforestation. Recent studies attempted to solve the
limitation (3) by integrating data from two sensors and introduc-
ing a climate variable (Dutrieux et al., 2015), or attempted to re-
duce the effect of multiple seasonality with a vegetation index
that is normalized to spatially neighboring pixels (Hamunyela et
al., 2016).
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In this study we integrate the spectral information in BFAST Mon-
itor change monitoring framework and show the potential of in-
tegrating multidimensional information to improve the change
monitoring process. The exploration is based on the assump-
tion that the original variables can be seen as the composite of
independent variables, with one of them containing deforestation
information.

2. STUDY AREA AND DATA PREPROCESSING

We carried out a case study in a deciduous tropical forest in Bo-

livia, South America (18.49° S, 62.36° W, 10,000km?). The

dataset consists of all available Landsat TM5 and Landsat ETM+-7
L1T imagery before 2015. All the sample points were collected

manually with high and medium spatial resolution satellite data.

We masked the snow, shadow and water and cloud with FMask

(Zhu and Woodcock, 2012). Low extreme values are filtered and

interpolated, and Band values that are out of the range (1-10000)

are filtered.

3. METHOD

3.1 Multi-spectral bands transformation

We use Principal Component Analysis (PCA) to find a project-
ing vector a on the original variables matrix X, so that the new
variables in aX are orthogonal. This means to diagonalize the
co-variance matrix of X (var(X)),

var(aX) = a’'Ya, 1)
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Ya = Aa, 2

where a is the projecting matrix, and ) is the diagonalized covari-
ance matrix that is sorted from the largest value of the variance.
This lead to the eigen-vector based analysis, where a contains
eigenvector or the PC loadings, and A contains eigenvalue. The
new variable matrix is then obtained as the weighted combination
of original variables, which is the PC score.

PC loadings are trained on matrix X contains the spectral time
series of Landsat image band 1-5, and band 7 for spectral time se-
ries of each location, X = [Xij} (mx6)° with the gray scale value
attime ¢(¢ = 1,...,m), for each spectral band j(j = 1, ...,6). X
is centered to zero mean and standardized to unit variance.

The input matrix X is all available data, with this method we see
the original spectral bands as mixing variables, and expect to find
the independent data source that compose to this variable:

X = AS, 3

where X denotes the original data, A denotes a mixing matrix,
and S denotes the independent components.

The goal then is to estimate a separation matrix to separate the
independent sources from the mixture.

Y = WX, )

where Y denotes the independent data source, W denotes the sep-
aration matrix, and X denotes the original data.

3.2 Deforestation Monitoring

We applied BFAST monitor on the scores of PC components to
monitor deforestation. To model the temporal behaviour of the
forest, we only fit a mean model to the time series because the
seasonality effects have been removed. Data covering the period
of 1984 - 2005 were used as initial stable history. Then the algo-
rithms sequentially monitor for change in the monitoring period.
If the monitoring period becomes longer than 2 years, and no
change is detected, the data that have been monitored are then
moved into stable historical period. The algorithms stops moni-
toring when change is detected or the test reach to the last obser-
vation. The results were validated considering spatial accuracy
and temporal accuracy. The spatial accuracy consists of omis-
sion error, commission error, and overall accuracy. The tempo-
ral accuracy is measured by the number of observations between
BFAST detected change date and real change date. This is to
cope with the irregularity of Landsat data. We compared our re-
sults to the results achieved from NDMI. NDMI has been recom-
mended in recent studies because it achieve best results. NDMI
is calculated as (SWIF-NIR)/(SWIF+NIR). We fitted a 1st order
harmonic model om NDMI time series when monitoring defor-
estation using BFAST Monitor.

4. RESULT

Our results show that using the score of PC3 has resulted in sig-
nificantly improved overall accuracy and a shorter temporal delay
than when monitoring deforestation using NDMI index(Table 1).
Time series of different indices and the results of disturbance de-
tection can be observed from (Figure 1. Using NDMI has resulted

in many false positives (change detected before real change). The
score of PC3 successfully extracted the signal of the disturbance,
and thus resulted in a more suitable index for deforestation mon-
itoring.

Table 1: validation result

overall spatial accuracy temporal delay

PC1 0.813 13
PC2 0.692 22
PC3 0.900 7
NDMI 0.331 22

Table 2: confusion matrix. Temporal detection delay is by count-
ing the number of observation. PCA3 is the score of the 3rd PC
that is applied on all the available data. PCA3 history is to com-
pute PCA on history period only.
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Figure 1: time of real change (red line) vs. time of detected
change (blue line) using the PCA scores as index and NDMI as
index

5. DISCUSSION
5.1 The PCA integrated BFAST

In this study we still used the BFAST framework for deforesta-
tion monitor. The methodology is different from the original idea
of monitoring an vegetation index that fluctuate with the change
of vegetation, which is subject to drought and seasonality effects.
The proposed method is to find the source variables of mixing
variable, which the source variables can be estimated with dif-
ferent ways. Such as a variety of models in factor analysis. In
the situation where the distribution of original variables variables
are not Gaussian, and the non-Gaussian change is of interest, ICA
(independent component analysis) might be used. This PCA inte-
grated method detects the change of relationship between multi-
spectral bands, which is free from the modeling or removing of
seasonality, and other short-term climatic effects.

5.2 limitation

The limitation of this method is that the PC components are or-
dered by eigenvalues (correlation), which does not contain physi-
cal meanings. For example, the pattern of the eigenvectors of the
2nd PC component of one time series could show the same pat-
tern to the eigenvectors of the 1st PC component of another time
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series. The method is successful here because forest is spatially
homogeneous (consists only vegetation), so that for most of the
time series the order of PC components would be consistent.

6. CONCLUSION

In this paper we firstly explored the transformation of spectral
time series into new variables that include a clearer change sig-
nal. We distinguish this method between the previously feature
space transformation methods (e.g. NDMI), which does not use
the previous time series information. Secondly we explored a
way to remove seasonality effect. Both results indicate improved
deforestation monitor in temporal delay. With increased spatial
and temporal resolution of satellite data in future, combining di-
mensional reduction methods and sequential test of time series
structural change has promising application in realizing near real-
time deforestation monitor and contribute greatly to forest man-
agement and ecosystem conservation.
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