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ABSTRACT: 

Leaf area index (LAI) is an important essential biodiversity variable due to its role in many terrestrial ecosystem processes such as 
evapotranspiration, energy balance, and gas exchanges as well as plant growth potential. A novel approach presented here is the retrieval 
of LAI using thermal infrared (8–14 μm, TIR) measurements. Here, we evaluate LAI retrieval using TIR hyperspectral data. Canopy 
emissivity spectral measurements were recorded under controlled laboratory conditions using a MIDAC (M4401-F) illuminator Fourier 
Transform Infrared spectrometer for two plant species during which LAI was destructively measured. The accuracy of retrieval for LAI 
was then assessed using partial least square regression (PLSR) and narrow band index calculated in the form of normalized difference 
index from all possible combinations of wavebands. The obtained accuracy from the PLSR for LAI retrieval was relatively higher than 
narrow-band vegetation index (0.54<R2<0.74). The results demonstrated that LAI may successfully be estimated from hyperspectral 
thermal data. The study highlights the potential of hyperspectral thermal data for retrieval of vegetation biophysical variables at the 
canopy level for the first time.  

1. INTRODUCTION

Leaf area index (LAI) is a principal component of 
biogeochemical cycles in ecosystems (Bréda 2003). Among 
vegetation biophysical properties, LAI is of particular interest, 
as it exhibits significant control on the transpiration, 
respiration, and gas exchanges (e.g., uptake of CO2 and H2O by 
the canopy) between terrestrial ecosystems and atmosphere. 
Previous studies have shown the importance of LAI in 
ecological and remote sensing studies. LAI is a key input for 
climate and large-scale ecosystem models and also is a key 
structural characteristic of forest ecosystems (Chen et al. 1997; 
Myneni et al. 1997; Wang et al. 2004; Zheng and Moskal 2009). 
In the last decades, LAI has been successfully retrieved using 
hyperspectral data in the visible/near–infrared (0.35-1.0 µm, 
VNIR) and short-wave infrared (1.0-2.5 µm, SWIR) regions 
(Zheng and Moskal 2009). Despite the broadly recognized 
importance of LAI across ecological research, to our 
knowledge, LAI has not estimated from thermal infrared (8-14 
µm, TIR) hyperspectral data. TIR hyperspectral data deserves 
the same exploration and development of methods, as 
hyperspectral data in the VNIR and SWIR regions.  

Recently, Ullah (2013) showed that TIR hyperspectral data is 
supplementary to other remote sensing data and has the 
potential to explain the biochemical characteristics of 
vegetation (e.g. water content) at leaf level. The primary 
absorption features associated with water and cellulose, as 
important vegetation components, are only observable in the 
mid-wave infrared (3-5 µm, MIR) and TIR regions (Fabre et al. 
2011; Gerber et al. 2011; Ribeiro da Luz 2006). In addition, 
previously, it has been presumed that plants are opaque and 
featureless in the TIR region. However, recent studies have 
uncovered that various plant species display distinct emissivity 
spectra and have recognizable spectral features in the TIR 

region (Ribeiro da Luz and Crowley 2010; Ullah et al. 2012). 
There are a number of reasons why to date limited attention was 
directed at using TIR hyperspectral remote sensing data for 
vegetation studies. In the TIR region, spectra result from the 
emissivity of surfaces, rather than from reflectance. Only a few 
instruments measure TIR emissivity spectra at high spectral 
resolution, and only very few are able to do this for complex 
surfaces such as canopies. Therefore, few studies have been 
conducted on TIR hyperspectral data for vegetation studies at 
canopy level (Ribeiro da Luz and Crowley 2010; Sepulcre-
Cantó et al. 2006). More studies are required to assess and 
understand TIR remotely measured spectra from vegetation 
particularly at canopy level.  

LAI has been predicted in many studies using hyperspectral 
data from the VNIR and SWIR regions using univariate (e.g. 
vegetation indices) and multivariate (e.g. partial least squares 
regression (PLSR)) models. This has led to the development of 
new vegetation indices which have further improved LAI 
prediction (Asner and Martin 2008; Baret and Guyot 1991; 
Darvishzadeh et al. 2009; Eriksson et al. 2006; Gao et al. 2000; 
Haboudane et al. 2004; Koetz et al. 2005). To our knowledge, 
neither the relation between LAI and univariate methods nor 
the relation between LAI and multivariate methods in the TIR 
region has yet been demonstrated. Therefore, the main 
objective of this study was to investigate the retrieval of LAI in 
the TIR region, using narrow band indices and PLSR. 

2. MATERIALS AND METHODS

2.1. LAI measurements 

In the present study, two plant species were selected: Azalea 
japonica (n=10) and Ficus benjamina (n=6). The leaves from 
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the plants were harvested in several steps and LAI (m2m−2) was 
calculated using the measured surface area of the leaves and the 
corresponding ground area of the canopy. The dataset included 
16 plant specimens, which yielded 60 LAI estimates from the 
destructive sampling. 

2.2. Canopy thermal infrared radiance measurement 

The radiance spectral measurements were made using a 
portable MIDAC illuminator Fourier Transform Infrared 
(FTIR) spectrometer (Model M4401-F; MIDAC Corporation, 
CA, USA). Measurements were made at nadir position above 
the samples. To create optimal measurement conditions and 
reduce any possible source of errors due to the changes in 
atmospheric conditions or temperature, the measurements were 
made under controlled laboratory conditions in which the 
walls, ceiling, and floor were coated with a black material (Avis 
Aqua Blackboard Black) and black plastic of known emissivity. 
We reduced the laboratory temperature to 10˚C in order to 
generate a suitable thermal contrast with the plants, which were 
at a higher room temperature. In addition, plants were kept 
outside the laboratory at an ambient room temperature of 20°C 
and each one was briefly introduced to the laboratory in order 
to make the thermal measurements. Measurements were made 
with a fixed vertical distance between sensor and sample (60 
cm). In this experiment, the background soil was covered with 
black plastic of known emissivity to minimize possible effects 
of soil. The radiance spectra of the plant canopies were 
measured between wavelengths of 2.5–20 μm at a resolution of 
two cm−1. The emissivity spectra of plant canopies at each LAI 
value were obtained using a series of FTIR measurements 
performed in the following order: radiance measurements of 
the hot blackbody, radiance measurement of the cold 
blackbody, radiance measurement of the sample (i.e., the plant 
canopy with specific LAI value), and finally, radiance 
measurements of a highly diffuse reflecting gold plate 
(Infragold®). For instrument radiance calibration, two 
blackbodies (one hot, one cold) were used. The cold blackbody 
temperature was set just below the ambient temperature, at 5°C 
(Korb et al. 1996). The hot blackbody temperature was set 
above the sample temperature (Hori et al. 2006; Salvaggio and 
Miller 2001), at 30°C. Details of the radiometric calibration 
applied with the measurements of these blackbodies’ radiances 
can be found in (Hook and Kahle 1996). A diffuse reflecting 
gold plate with an emissivity of ~ 0.04 was used to collect 
downwelling radiance (DWR) in order to determine the 
quantitative influence of the laboratory background self-
emission (Eisele et al. 2015). The measurement series were 
taken within five minutes to minimize the possible drift of the 
instrument, physiological changes in the plants, and 
fluctuations in laboratory temperature. After each set of 
measurements, the canopy was rotated 90 degrees clockwise. 
The final corresponding canopy emissivity spectra of each 
sample (for a specific LAI value), was then calculated from the 
average of four sets of measurements (covering 360 degrees). 
In total, 240 (4*60) canopy radiance measurements were 
obtained for two plant species. Spectral emissivity of the plants 
was calculated from their absolute radiance using the following 
equation (Korb et al. 1996), 

εsam (λ) = Lsam (λ)−LDWR(λ)
B(λ,Tsam)−LDWR(λ) (1) 

Where  
εsam(λ) = Directional emissivity of the sample at the 
wavelength λ 
Lsam (λ) = Spectral radiance from the sample 
Tsam  = The true physical temperature of the sample 
B(λ, Tsam) = Planck function at the wavelength λ and sample 
temperature 
LDWR(λ)  = Total spectral DWR from the hemisphere above 
the sample.  

Tsam must accurately represent the emission temperature. 
Therefore, after measuring canopy temperature before and after 
each measurement, the blackbody fit method was used to 
calculate the sample emissivity value. Details about the 
blackbody fit method can be found in Kahle and Alley (1992) 
and Salvaggio and Miller (2001). The emissivity of 279 
wavebands between 8 μm and 14 μm was selected for analysis; 
measurements outside this range had a very low signal strength. 
A Savitzky–Golay filter with a frame size of 15 data points and 
second-degree polynomial was used to reduce the noise of the 
canopy emissivity spectra (Savitzky and Golay 1964).  

2.3. Estimation of leaf area index 

2.3.1. Narrow band Index 
Generally, vegetation indices which are calculated from 
different combinations of bands are divided into two main 
categories: orthogonal and ratio indices (Baret and Guyot 
1991). Of these vegetation indices, the normalized difference 
index used frequently to derive LAI from optical remote 
sensing data (Huete et al. 2002). Therefore, in this study, this 
widely used index was calculated from all the possible paired 
waveband combinations, using canopy emissivity spectra of 
pooled data and each species between 8 μm and 14 μm. To 
evaluate the strength of the relation between proposed index 
and LAI, the coefficients of determination (R2) of all possible 
two-waveband combinations of vegetation index and LAI were 
used. From all these combinations, we selected the narrow band 
indices that performed best at estimating LAI, as having the 
maximum R2 with LAI (Mutanga and Skidmore 2004). The 
naming conventions, acronyms, and calculations for the 
considered index is listed in Table 1. In this study, the concept 
of calculating normalized difference index is based upon the 
contrast in the emissivity between two different spectra 
wavebands (Rλ1and Rλ2). 

Table 1. The spectral index used in this paper. 
Name Acronym TIR Equation 

Normalized Difference ND 
Rλ1 − Rλ2

Rλ1 + Rλ2

Vegetation indices can be related to LAI through linear or 
exponential regression models (Schlerf et al. 2005). Some 
studies have confirmed that vegetation indices have decreasing 
sensitivity to rising LAI values when optical multispectral and 
hyperspectral data are used (Baret and Guyot 1991; Broge and 
Mortensen 2002; Chen and Cihlar 1996; Turner et al. 1999). 
Darvishzadeh et al. (2009) showed that linear and exponential 
regression models are similarly accurate at estimating LAI 
from hyperspectral data. In our study, a linear regression model 
was used to model the relationship between narrow band index 
as the predictor variable and LAI. In addition, a cross-
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validation procedure also known as the “leave one out method” 
(Duda and Hart 1973), was used to validate the regression 
models. The estimated LAI was assessed using the cross-
validated coefficient of determination (R2CV), and cross-
validated root mean squared error (RMSECV) for the best 
performing narrow band index.  

2.3.2. Partial least squares regression 
Hyperspectral data has a high dimensionality and high 
collinearity between adjacent wavebands. PLSR is a popular 
multivariate statistical technique for transforming the 
wavebands to new orthogonal factors, i.e. components, which 
eliminates this collinearity. Multivariate methods include 
models such as PLSR which as so-called “full spectrum 
methods” employ all available spectral data simultaneously 
(Atzberger et al. 2010) and reduce the effects of multicollinearity 
as a common problem inherent to the hyperspectral dataset 
(Mirzaie et al. 2014). 

 PLSR has been broadly applied in remote sensing vegetation 
analysis (Cho et al. 2007; Kooistra et al. 2004). Here, PLSR 
analysis was used to determine the relative contribution of LAI 
to the 279-waveband canopy emissivity spectra for all the 
sampled species. The canopy emissivity spectra as independent 
variables were mean-centered before performing the PLSR 
analysis. To avoid over-fitting and prevent collinearity, an 
optimum number of factors was determined, using a cross-
validation procedure. The criterion for adding an extra factor to 
the model was that it decreased RMSEcv by > 2% (Geladi and 
Kowalski 1986). The accuracy of the models was evaluated 
using RMSECV. All PLSR analyses were carried out using the 
TOMCAT toolbox 1.01 within MATLAB (Daszykowski et al. 
2007). 

3. RESULTS

3.1. Narrow band indices and leaf area index 

The descriptive statistics of our experimental setup showed 
LAI ranges between 0.60 (m2m−2) and 8.36 (m2m−2). Together 
with the variation in LAI values, the measured canopy 
emissivity exhibited a large variability (Table 2). 

Table 2. Summary statistics of the leaf area index (LAI) 
measurements for four plant species (n=60). 

Species name LAI (m2m-2) 
Mean Max Min Sample size 

Azalea japonica 1.57 3.35 0.60 30 
Ficus benjamina 3.60 8.36 1.04 30 

Pooled data 2.58 8.36 0.60 60 

Desired narrow band index (i.e. ND) was calculated from the 
measured canopy emissivity spectra, using all possible two-
waveband combinations. The coefficients of determination 
(R2) between ND and LAI was computed and tabulated in Table 
3. Table 3 demonstrates the maximum R2 between the ND and
the LAI, for each species and pooled data, as well as the band 
position of the best performing narrow band index. The 
maximum R2 value obtained between LAI and ND for Azalea 
japonica and Ficus benjamina were 0.65 and 0.48 respectively. 

The results showed that the maximum R2 with LAI across 
species was yielded by wavebands in the 9.9-10.6 µm range in 
combination with the bands in the 10.2-11.9 µm range. In 
general, LAI was estimated with appropriate accuracy.  

Table 3. Band position and the coefficients of determination 
(R2) values between the best performing narrow band index and 
LAI. R2CV is the cross-validated coefficient of determination 
between estimated and measured LAI; RMSECV is the relative 
root mean square error. 

Species name R2 
Most Sensitive bands Validation 
λ1 (μm) λ2 (μm) R2

CV RMSECV 
Ficus benjamina 0.65 10.6 11.9 0.60 1.14 
Azalea japonica 0.48 9.9 10.2 0.38 0.43 

Pooled data 0.63 10.1 11.8 0.60 1.06 

An illustration of these results is depicted in the 2-D correlation 
plot (Figure 4). The meeting point of each pair of wavebands 
in the 2-D plots corresponded to the R2 value of LAI and the 
ND calculated from the emissivity values in those two-
wavebands. 

(a) 

(b) 
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(c) 
Figure 4. 2-D correlation plots representing the coefficient of 
determination (R2) between leaf area index and normalized 
difference index (ND) for Ficus benjamina (a), Azalea 
japonica (b), and pooled data (c) calculated from all possible 
two-waveband combinations between 8 µm and 14 µm.  
The relationship between measured and estimated LAI in two 
species and pooled data using normalized difference index is 
illustrated in Figure 5. The scatter plots demonstrate that linear 
relationship existed between estimated and measured LAI 
when the best waveband combinations were used for the 
considered index. 

(a) 

(b) 

(c) 

Figure 5. Scatterplot of measured versus predicted leaf area 
index for the best narrow band index calculated from 
normalized difference index (ND) for Ficus benjamina (a), 
Azalea japonica (b), and pooled data (c). The optimum 
wavebands are those reported in Table 3. 

3.2. Partial least squares regression and leaf area 
index

The PLSR regression using TIR spectra yielded the maximum 
R2 0.68 and 0.54, in Azalea japonica and Ficus benjamina, 
respectively. The optimal number of factors modelled using 
PLSR ranged from three to five. (Table 6). For both species, 
the PLSR models in the TIR region yielded better predictions 
of LAI in comparison with the narrow band index (i.e. resulted 
in a higher R2 and lower relative RMSECV). For instance, the 
improvement was noticed for Azalea japonica where R2 
enhanced from 0.48 to 0.54 and RMSECV reduced from 0.43 to 
0.30. Cross-validation estimation of LAI using the entire 
emissivity spectra in PLSR models is depicted in Figure 7.  

Table 6. The performance of partial least squares regression for 
estimating leaf area index. 

Species No. of Factors R2 RMS RMSECV 
Ficus benjamina 3 0.68 0.98 1.12 
Azalea japonica 3 0.54 0.36 0.30 

Pooled data 5 0.74 0.83 1.25 

(a) 
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(b) 

(c) 
Figure 7. Scatterplot of measured versus estimated leaf area 
index using entire emissivity spectra in the partial least squares 
regression model from TIR region: Ficus benjamina (a), Azalea 
japonica (b), and pooled data (c). 

4. CONCLUSIONS

It has long been thought that biophysical or biochemical 
properties of plants cannot be retrieved using emissivity spectra 
in the TIR region. This may partly be contributed to the 
complexity of measuring vegetation biophysical and 
biochemical variables, as well as the lack of suitable 
instruments to measure emissivity in the TIR region. Our 
results demonstrate that biophysical properties of vegetation at 
the canopy level, such as LAI, can be retrieved using canopy 
emissivity spectra in the TIR region. Univariate and 
multivariate techniques can be applied to retrieve LAI values 
using emissivity spectra. These results are comparable to the 
results of previous studies in the optical domain for LAI 
estimation (Darvishzadeh et al. 2008a; Schlerf et al. 2005). 

The results of our experiments demonstrate that vegetation 
indices enable to accurately predict LAI for single species in 
the TIR domain rather than pooled data including two plant 
species. It can be attributed to differences in canopy structure 
(i.e., leaf size and orientation), and probably by the biochemical 
concentrations (i.e., cellulose and cutin) (Buitrago et al. 2016) 
of the leaves of these species. As can be seen from the Table 3, 
comparing the best performing narrow band index location 
among species showed that they were located in the slightly 
different spectral region. This can again be explained by 
differences in the biochemical concentration of leaves and 

canopy structural properties of the species studied which could 
effect on emissivity spectra and radiance scattering in the TIR 
region (Ribeiro da Luz and Crowley 2007; Salisbury 1986). 
When the PLSR was applied, the retrieved LAI had a relatively 
high accuracy compared with results obtained using narrow 
band index (Table 3). The results highlight that vegetation 
narrow band index utilize a limited number of spectral data 
bands (i.e. here only information from two-waveband 
combinations) from the massive spectral content of the total 
emissivity information available, whereas the PLSR technique 
employed all available spectral data. Our results are in a line 
with the Darvishzadeh et al. (2008b) finding which showed the 
PLSR technique improved the prediction of LAI compared 
with narrow band indices in the optimal domain. In all the 
models considered, the relationship between estimated and 
measured LAI was found to be linear. This study revealed that 
LAI could be estimated reasonably accurately in the TIR 
region. Therefore, we can conclude that LAI can be 
successfully be retrieved from TIR hyperspectral data, even at 
relatively high values of LAI. This study demonstrates TIR 
hyperspectral data can be expected to complement other remote 
sensing data and also it proof of concept for measuring LAI 
using the TIR, and brings a following interesting challenge: 
how to upscale the results from the laboratory (plant canopy) 
to field conditions.  
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	Mean
	1.57
	Azalea japonica
	3.60
	Ficus benjamina
	2.58
	Pooled data



