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ABSTRACT:

Leaf area index (LAI) is an important essential biodiversity variable due to its role in many terrestrial ecosystem processes such as
evapotranspiration, energy balance, and gas exchanges as well as plant growth potential. A novel approach presented here is the retrieval
of LAI using thermal infrared (814 um, TIR) measurements. Here, we evaluate LAI retrieval using TIR hyperspectral data. Canopy
emissivity spectral measurements were recorded under controlled laboratory conditions using a MIDAC (M4401-F) illuminator Fourier
Transform Infrared spectrometer for two plant species during which LAI was destructively measured. The accuracy of retrieval for LAI
was then assessed using partial least square regression (PLSR) and narrow band index calculated in the form of normalized difference
index from all possible combinations of wavebands. The obtained accuracy from the PLSR for LAl retrieval was relatively higher than
narrow-band vegetation index (0.54<R?<0.74). The results demonstrated that LAl may successfully be estimated from hyperspectral
thermal data. The study highlights the potential of hyperspectral thermal data for retrieval of vegetation biophysical variables at the

canopy level for the first time.

1. INTRODUCTION

Leaf area index (LAI) is a principal component of
biogeochemical cycles in ecosystems (Bréda 2003). Among
vegetation biophysical properties, LAl is of particular interest,
as it exhibits significant control on the transpiration,
respiration, and gas exchanges (e.g., uptake of CO2 and H20 by
the canopy) between terrestrial ecosystems and atmosphere.
Previous studies have shown the importance of LAl in
ecological and remote sensing studies. LAI is a key input for
climate and large-scale ecosystem models and also is a key
structural characteristic of forest ecosystems (Chen et al. 1997;
Myneni et al. 1997; Wang et al. 2004; Zheng and Moskal 2009).
In the last decades, LAI has been successfully retrieved using
hyperspectral data in the visible/near-infrared (0.35-1.0 um,
VNIR) and short-wave infrared (1.0-2.5 um, SWIR) regions
(zZheng and Moskal 2009). Despite the broadly recognized
importance of LAl across ecological research, to our
knowledge, LAI has not estimated from thermal infrared (8-14
pum, TIR) hyperspectral data. TIR hyperspectral data deserves
the same exploration and development of methods, as
hyperspectral data in the VNIR and SWIR regions.

Recently, Ullah (2013) showed that TIR hyperspectral data is
supplementary to other remote sensing data and has the
potential to explain the biochemical characteristics of
vegetation (e.g. water content) at leaf level. The primary
absorption features associated with water and cellulose, as
important vegetation components, are only observable in the
mid-wave infrared (3-5 um, MIR) and TIR regions (Fabre et al.
2011; Gerber et al. 2011; Ribeiro da Luz 2006). In addition,
previously, it has been presumed that plants are opaque and
featureless in the TIR region. However, recent studies have
uncovered that various plant species display distinct emissivity
spectra and have recognizable spectral features in the TIR

region (Ribeiro da Luz and Crowley 2010; Ullah et al. 2012).
There are a number of reasons why to date limited attention was
directed at using TIR hyperspectral remote sensing data for
vegetation studies. In the TIR region, spectra result from the
emissivity of surfaces, rather than from reflectance. Only a few
instruments measure TIR emissivity spectra at high spectral
resolution, and only very few are able to do this for complex
surfaces such as canopies. Therefore, few studies have been
conducted on TIR hyperspectral data for vegetation studies at
canopy level (Ribeiro da Luz and Crowley 2010; Sepulcre-
Canto et al. 2006). More studies are required to assess and
understand TIR remotely measured spectra from vegetation
particularly at canopy level.

LAI has been predicted in many studies using hyperspectral
data from the VNIR and SWIR regions using univariate (e.g.
vegetation indices) and multivariate (e.g. partial least squares
regression (PLSR)) models. This has led to the development of
new vegetation indices which have further improved LAI
prediction (Asner and Martin 2008; Baret and Guyot 1991;
Darvishzadeh et al. 2009; Eriksson et al. 2006; Gao et al. 2000;
Haboudane et al. 2004; Koetz et al. 2005). To our knowledge,
neither the relation between LAI and univariate methods nor
the relation between LAI and multivariate methods in the TIR
region has yet been demonstrated. Therefore, the main
objective of this study was to investigate the retrieval of LAl in
the TIR region, using narrow band indices and PLSR.

2. MATERIALS AND METHODS

2.1. LAl measurements

In the present study, two plant species were selected: Azalea
japonica (n=10) and Ficus benjamina (n=6). The leaves from
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the plants were harvested in several steps and LAI (m?m~2) was
calculated using the measured surface area of the leaves and the
corresponding ground area of the canopy. The dataset included
16 plant specimens, which yielded 60 LAI estimates from the
destructive sampling.

2.2. Canopy thermal infrared radiance measurement

The radiance spectral measurements were made using a
portable MIDAC illuminator Fourier Transform Infrared
(FTIR) spectrometer (Model M4401-F; MIDAC Corporation,
CA, USA). Measurements were made at nadir position above
the samples. To create optimal measurement conditions and
reduce any possible source of errors due to the changes in
atmospheric conditions or temperature, the measurements were
made under controlled laboratory conditions in which the
walls, ceiling, and floor were coated with a black material (Avis
Aqua Blackboard Black) and black plastic of known emissivity.
We reduced the laboratory temperature to 10°C in order to
generate a suitable thermal contrast with the plants, which were
at a higher room temperature. In addition, plants were kept
outside the laboratory at an ambient room temperature of 20°C
and each one was briefly introduced to the laboratory in order
to make the thermal measurements. Measurements were made
with a fixed vertical distance between sensor and sample (60
c¢m). In this experiment, the background soil was covered with
black plastic of known emissivity to minimize possible effects
of soil. The radiance spectra of the plant canopies were
measured between wavelengths of 2.5-20 um at a resolution of
two cm™L. The emissivity spectra of plant canopies at each LAl
value were obtained using a series of FTIR measurements
performed in the following order: radiance measurements of
the hot blackbody, radiance measurement of the cold
blackbody, radiance measurement of the sample (i.e., the plant
canopy with specific LAl value), and finally, radiance
measurements of a highly diffuse reflecting gold plate
(Infragold®). For instrument radiance calibration, two
blackbodies (one hot, one cold) were used. The cold blackbody
temperature was set just below the ambient temperature, at 5°C
(Korb et al. 1996). The hot blackbody temperature was set
above the sample temperature (Hori et al. 2006; Salvaggio and
Miller 2001), at 30°C. Details of the radiometric calibration
applied with the measurements of these blackbodies’ radiances
can be found in (Hook and Kahle 1996). A diffuse reflecting
gold plate with an emissivity of ~ 0.04 was used to collect
downwelling radiance (DWR) in order to determine the
quantitative influence of the laboratory background self-
emission (Eisele et al. 2015). The measurement series were
taken within five minutes to minimize the possible drift of the
instrument, physiological changes in the plants, and
fluctuations in laboratory temperature. After each set of
measurements, the canopy was rotated 90 degrees clockwise.
The final corresponding canopy emissivity spectra of each
sample (for a specific LAI value), was then calculated from the
average of four sets of measurements (covering 360 degrees).
In total, 240 (4*60) canopy radiance measurements were
obtained for two plant species. Spectral emissivity of the plants
was calculated from their absolute radiance using the following
equation (Korb et al. 1996),

— Lsam W -Lowr@®_
gsam (V) = 5o w0 )

Where

€sam (M) = Directional emissivity of the sample at the
wavelength A

Lsam (A) = Spectral radiance from the sample

Tsam = The true physical temperature of the sample

B(A, Tsam) = Planck function at the wavelength A and sample
temperature

Lpwr(A) = Total spectral DWR from the hemisphere above
the sample.

Tsam must accurately represent the emission temperature.
Therefore, after measuring canopy temperature before and after
each measurement, the blackbody fit method was used to
calculate the sample emissivity value. Details about the
blackbody fit method can be found in Kahle and Alley (1992)
and Salvaggio and Miller (2001). The emissivity of 279
wavebands between 8 um and 14 pm was selected for analysis;
measurements outside this range had a very low signal strength.
A Savitzky—Golay filter with a frame size of 15 data points and
second-degree polynomial was used to reduce the noise of the
canopy emissivity spectra (Savitzky and Golay 1964).

2.3. Estimation of leaf area index

2.3.1. Narrow band Index

Generally, vegetation indices which are calculated from
different combinations of bands are divided into two main
categories: orthogonal and ratio indices (Baret and Guyot
1991). Of these vegetation indices, the normalized difference
index used frequently to derive LAI from optical remote
sensing data (Huete et al. 2002). Therefore, in this study, this
widely used index was calculated from all the possible paired
waveband combinations, using canopy emissivity spectra of
pooled data and each species between 8 pm and 14 um. To
evaluate the strength of the relation between proposed index
and LAl the coefficients of determination (R?) of all possible
two-waveband combinations of vegetation index and LAI were
used. From all these combinations, we selected the narrow band
indices that performed best at estimating LAI, as having the
maximum R? with LAI (Mutanga and Skidmore 2004). The
naming conventions, acronyms, and calculations for the
considered index is listed in Table 1. In this study, the concept
of calculating normalized difference index is based upon the
contrast in the emissivity between two different spectra
wavebands (Ry;and R;,).

Table 1. The spectral index used in this paper.

Name Acronym TIR Equation

. . RM - sz
Normalized Difference ND _—
Ry + Ry,

Vegetation indices can be related to LAI through linear or
exponential regression models (Schlerf et al. 2005). Some
studies have confirmed that vegetation indices have decreasing
sensitivity to rising LAI values when optical multispectral and
hyperspectral data are used (Baret and Guyot 1991; Broge and
Mortensen 2002; Chen and Cihlar 1996; Turner et al. 1999).
Darvishzadeh et al. (2009) showed that linear and exponential
regression models are similarly accurate at estimating LAI
from hyperspectral data. In our study, a linear regression model
was used to model the relationship between narrow band index
as the predictor variable and LAIl. In addition, a cross-
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validation procedure also known as the “leave one out method”
(Duda and Hart 1973), was used to validate the regression
models. The estimated LAl was assessed using the cross-
validated coefficient of determination (R%cv), and cross-
validated root mean squared error (RMSEcv) for the best
performing narrow band index.

2.3.2. Partial least squares regression

Hyperspectral data has a high dimensionality and high
collinearity between adjacent wavebands. PLSR is a popular
multivariate statistical technique for transforming the
wavebands to new orthogonal factors, i.e. components, which
eliminates this collinearity. Multivariate methods include
models such as PLSR which as so-called “full spectrum
methods” employ all available spectral data simultaneously
(Atzberger et al. 2010) and reduce the effects of multicollinearity
as a common problem inherent to the hyperspectral dataset
(Mirzaie et al. 2014).

PLSR has been broadly applied in remote sensing vegetation
analysis (Cho et al. 2007; Kooistra et al. 2004). Here, PLSR
analysis was used to determine the relative contribution of LAI
to the 279-waveband canopy emissivity spectra for all the
sampled species. The canopy emissivity spectra as independent
variables were mean-centered before performing the PLSR
analysis. To avoid over-fitting and prevent collinearity, an
optimum number of factors was determined, using a cross-
validation procedure. The criterion for adding an extra factor to
the model was that it decreased RMSEcv by > 2% (Geladi and
Kowalski 1986). The accuracy of the models was evaluated
using RMSEcv. All PLSR analyses were carried out using the
TOMCAT toolbox 1.01 within MATLAB (Daszykowski et al.
2007).

3. RESULTS
3.1. Narrow band indices and leaf area index
The descriptive statistics of our experimental setup showed
LAI ranges between 0.60 (m?m~2) and 8.36 (m?m~2). Together
with the variation in LAI values, the measured canopy

emissivity exhibited a large variability (Table 2).

Table 2. Summary statistics of the leaf area index (LAI)
measurements for four plant species (n=60).

The results showed that the maximum R2? with LAl across
species was yielded by wavebands in the 9.9-10.6 um range in
combination with the bands in the 10.2-11.9 um range. In
general, LAI was estimated with appropriate accuracy.

Table 3. Band position and the coefficients of determination
(R?) values between the best performing narrow band index and
LAI. R2cv is the cross-validated coefficient of determination
between estimated and measured LAI; RMSEcv is the relative
root mean square error.

Speci R? Most Sensitive bands Validation
pecles name Ji(um)  J2(um)  Rlocw  RMSEoy
Ficus benjamina  0.65 10.6 11.9 0.60 1.14
Azalea japonica 0.48 9.9 10.2 0.38 0.43
Pooled data 0.63 10.1 11.8 0.60 1.06

Species name LAI (m.zm_z) -
Mean Max Min Sample size
Azalea japonica 1.57 3.35 0.60 30
Ficus benjamina 3.60 8.36 1.04 30
Pooled data 2.58 8.36 0.60 60

Desired narrow band index (i.e. ND) was calculated from the
measured canopy emissivity spectra, using all possible two-
waveband combinations. The coefficients of determination
(R?) between ND and LAI was computed and tabulated in Table
3. Table 3 demonstrates the maximum R? between the ND and
the LAI, for each species and pooled data, as well as the band
position of the best performing narrow band index. The
maximum R? value obtained between LAl and ND for Azalea
japonica and Ficus benjamina were 0.65 and 0.48 respectively.

An illustration of these results is depicted in the 2-D correlation
plot (Figure 4). The meeting point of each pair of wavebands
in the 2-D plots corresponded to the R? value of LAI and the
ND calculated from the emissivity values in those two-
wavebands.
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Figure 4. 2-D correlation plots representing the coefficient of
determination (R?) between leaf area index and normalized
difference index (ND) for Ficus benjamina (a), Azalea
japonica (b), and pooled data (c) calculated from all possible
two-waveband combinations between 8 pum and 14 pm.

The relationship between measured and estimated LAI in two
species and pooled data using normalized difference index is
illustrated in Figure 5. The scatter plots demonstrate that linear
relationship existed between estimated and measured LAl
when the best waveband combinations were used for the
considered index.
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Figure 5. Scatterplot of measured versus predicted leaf area
index for the best narrow band index calculated from
normalized difference index (ND) for Ficus benjamina (a),
Azalea japonica (b), and pooled data (c). The optimum
wavebands are those reported in Table 3.

3.2. Partial least squares regression and leaf area
index

The PLSR regression using TIR spectra yielded the maximum
R? 0.68 and 0.54, in Azalea japonica and Ficus benjamina,
respectively. The optimal number of factors modelled using
PLSR ranged from three to five. (Table 6). For both species,
the PLSR models in the TIR region yielded better predictions
of LAI in comparison with the narrow band index (i.e. resulted
in a higher R? and lower relative RMSEcv). For instance, the
improvement was noticed for Azalea japonica where R?2
enhanced from 0.48 to 0.54 and RMSEcv reduced from 0.43 to
0.30. Cross-validation estimation of LAl using the entire
emissivity spectra in PLSR models is depicted in Figure 7.

Table 6. The performance of partial least squares regression for
estimating leaf area index.

Species No. of Factors R? RMS  RMSEcy

Ficus benjamina 3 0.68 0.98 1.12
Azalea japonica 3 0.54 0.36 0.30
Pooled data 5 0.74 0.83 1.25

10

Ficus benjamina

Estimated Leaf Area Index

R2=0.689

RMS=0.98Y%

L L L L L L RMSEcv=1.126

0 1 2 3 4 5 3 7 8 9 10
Measured Leaf Area Index

(@)

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-99-2016 102



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXII' ISPRS Congress, 12—19 July 2016, Prague, Czech Republic

: ! : : —
Azalea japonica e
3 /
3
" x
X, x
x
%
x L %
wx %
ss/ P
y/
!
x
x
) / R2-0.543 |
RMS-0.361
RMSEcv=0.304
0 L I . 1 N . ! ]
0 0.5 | 15 > 23 3 15 4
Measured Leaf Area Index
10y ; T : - : : - : - "
Puoled daia o~
al ’//
~
1 e 4
//’
| - 4
L. -~
= ~
s e
T 35| P
3 L “
= x|~
2 ak - 4
F I x F x
% = -
Fal .o 1
EReP
#Ew % Koy ®
x ’:K ,/ 1
w BN
1} - R2-0,743
0 RMS-0,539
o= | | | | | ]  RMSEer=1.252
a 1 1 5 3 9 10
Measured Leaf Area Index
(©)

Figure 7. Scatterplot of measured versus estimated leaf area
index using entire emissivity spectra in the partial least squares
regression model from TIR region: Ficus benjamina (a), Azalea
japonica (b), and pooled data (c).

4. CONCLUSIONS

It has long been thought that biophysical or biochemical
properties of plants cannot be retrieved using emissivity spectra
in the TIR region. This may partly be contributed to the
complexity of measuring vegetation biophysical and
biochemical variables, as well as the lack of suitable
instruments to measure emissivity in the TIR region. Our
results demonstrate that biophysical properties of vegetation at
the canopy level, such as LAI, can be retrieved using canopy
emissivity spectra in the TIR region. Univariate and
multivariate techniques can be applied to retrieve LAI values
using emissivity spectra. These results are comparable to the
results of previous studies in the optical domain for LAl
estimation (Darvishzadeh et al. 2008a; Schlerf et al. 2005).

The results of our experiments demonstrate that vegetation
indices enable to accurately predict LAI for single species in
the TIR domain rather than pooled data including two plant
species. It can be attributed to differences in canopy structure
(i.e., leaf size and orientation), and probably by the biochemical
concentrations (i.e., cellulose and cutin) (Buitrago et al. 2016)
of the leaves of these species. As can be seen from the Table 3,
comparing the best performing narrow band index location
among species showed that they were located in the slightly
different spectral region. This can again be explained by
differences in the biochemical concentration of leaves and

canopy structural properties of the species studied which could
effect on emissivity spectra and radiance scattering in the TIR
region (Ribeiro da Luz and Crowley 2007; Salisbury 1986).
When the PLSR was applied, the retrieved LAI had a relatively
high accuracy compared with results obtained using narrow
band index (Table 3). The results highlight that vegetation
narrow band index utilize a limited number of spectral data
bands (i.e. here only information from two-waveband
combinations) from the massive spectral content of the total
emissivity information available, whereas the PLSR technique
employed all available spectral data. Our results are in a line
with the Darvishzadeh et al. (2008b) finding which showed the
PLSR technique improved the prediction of LAl compared
with narrow band indices in the optimal domain. In all the
models considered, the relationship between estimated and
measured LAI was found to be linear. This study revealed that
LAI could be estimated reasonably accurately in the TIR
region. Therefore, we can conclude that LAI can be
successfully be retrieved from TIR hyperspectral data, even at
relatively high values of LAI. This study demonstrates TIR
hyperspectral data can be expected to complement other remote
sensing data and also it proof of concept for measuring LAI
using the TIR, and brings a following interesting challenge:
how to upscale the results from the laboratory (plant canopy)
to field conditions.
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	Species name
	Mean
	1.57
	Azalea japonica
	3.60
	Ficus benjamina
	2.58
	Pooled data



