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ABSTRACT: 

 

Precision agriculture has always been the research hotspot around the world. And the optimization of nitrogen fertilization for crops 

is the core concerns. It is not only to improve the productivity of crops but also to avoid the environmental risks caused by over-

fertilization. Therefore, accurate estimation of nitrogen status is crucial for determining an nitrogen recommendation. Remote 

sensing techniques have been widely used to monitor crops for years, and they could offer estimations for stress status diagnosis 

through obtaining vertical structure parameters and spectral reflectance properties of crops. As an active remote sensing technology, 

lidar is particularly attractive for 3-dimensional information at a high point density. It has unique edges in obtaining vertical 

structure parameters of crops. However, capability of spectral reflectance properties is what the current lidar technology lacks 

because of single wavelength detection. To solve this problem, the concept of novel hyperspectral lidar (HSL), which combines the 

advantages of hyperspectal reflectance with high 3-dimensional capability of lidar, was proposed in our study. The design of 

instrument was described in detail. A broadband laser pulse was emitted and reflectance spectrum with 32 channels could be 

detected. Furthermore, the experiment was carried out by the novel HSL system to testify the potential application for monitoring 

nitrogen stress. Rice under different levels of nitrogen fertilization in central China were selected as the object of study, and four 

levels of nitrogen fertilization (N1-N4) were divided. With the detection of novel lidar system, high precision structure parameters of 

crops could be provided. Meanwhile, spectral reflectance properties in 32 wavebands were also obtained. The high precision 

structure parameters could be used to evaluate the stress status of crops. And abundant spectral information in 32 wavebands could 

improve the capacity of lidar system significantly. The results demonstrate that it is more effective for HSL system to distinguish 

different levels of nitrogen fertilization. Overall, HSL allows for probing not only high precision structure parameters but also 

spectral reflectance properties of crops. Compared with other approaches, the novel HSL has the potential to provide more 

comprehensive information of crops which can be assessed remotely in the application of precision agriculture. 
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1. INTRODUCTION 

The photosynthesis plays a significant role in the yields of 

crops production, which is also the key procedure of energy and 

carbon balance in the ecosystem (Zheng Niu et al., 2015). The 

effectivity of photosynthesis is greatly related with canopy 

chlorophyll, nitrogen (N) and water content (Goetz & Prince, 

1996; Running, 1990). Since N is a key element in chlorophyll 

of crops, N shortage will result in non-optimal photosynthesis, 

which makes the monitoring of N content and management of N 

fertilizer important for the precision agriculture. Quantity of N 

fertilizer will influence the N and chlorophyll content in crops. 

Different level of N stress will bring about different level of 

field production. So figuring out the relationship between N 

fertilizer, N content and field production is the research hotspot 

in the field of remote sensing. 

 

As for the traditional management technologies in agriculture, 

soil and plant testing methods have been successfully applied in 

monitoring N content and the N fertilizer effectivity (Liu et al., 

2003; Chen et al., 2004, 2006). However these methods are 

time consuming and sensitive to conditions of laboratory. 

During the past decades, the foliar biochemical concentration 

estimation by hyperspectral remote sensing methods has been 

developed greatly (Curran & Kupiec, 1995; Peterson & 

Hubbard, 1991; Howarth & Treitz, 1999; Wessman, 1994), 

which has become a popular, fast and non-destructive 

technology to determine N status during the crop growing 

seasons (Bronson et al., 2003; Gislum et al., 2004; Clay et al., 

2006).  

 

The spectrum of crop leaf obtained by hyperspectral remote 

sensing method is helpful for estimating the status of crops and 

the determination of drops of N fertilizer in seasons (Raun et al., 

2002; Jia et al., 2004). The strong absorption of incident laser 

will happen because of the chlorophyll in plant in blue and red 

bands, which determines the reflectance spectral shape in these 

bands. And the red-edge is also an important feature to estimate 

the chlorophyll content (Dash and Curran, 2004; Delegido et al., 

2010; Gitelson et al., 2005), which can also be derived by 

analysing the reflectance spectrum obtained by hyperspectral 

remote sensing method. Hyperspectral remote sensing is a 

relatively mature way to assess biochemical properties of crops, 

but there are also many disadvantages, i.e., data redundancy, 
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interference of external light and disability to detect the canopy 

structure of crops (Dalponte et al., 2013; Schlemmer et al., 

2013).  

 

Different from hyperspectral remote sensing technology, 

LiDAR (Light Detection And Ranging) is one of the active 

remote sensing method. It has been developed for decades and 

been applied in some different fields, especially as a novel 

active remote sensing technology in obtaining the vegetation 

parameters (Wehr and Lohr, 1999; Kotchenovaet al., 2004; 

Moorthy et al., 2011). LiDAR can determines the distance from 

the laser to the target with time of flight of laser pulses. The 

spatial structure of vegetation can be modelled by these 

distance information, which can be used to estimate the 

growing status of vegetation (Harding et al., 2001; Morsdorf et 

al., 2006). Unfortunately, LiDAR with just single wavelength is 

lack of spectral properties of the crops, which makes it difficult 

to assess precisely nitrogen contents than passive hyperspectral 

remote sensing. Hence, trying to combine these two kinds of 

remote sensing technologies to obtain spectral and spatial 

properties at the same time is a research hotspot in the field of 

remote sensing. Some attempts have been employed and 

primary results are presented in some studies (Tan and 

Narayanan, 2004; Koetz et al., 2007; Gong et al., 2012; Chen et 

al., 2010). 

 

However, there are some limitation to this technology in 

practical application, such as the laser sources and sensors 

selection according to the detection goals, the integration of  

different types of instruments (Nevalainen et al., 2013). These 

problems have not been solved until a supercontinuum laser 

source with a spectrum range from about 600 nm to 2000 nm 

was put forward (Kaasalainen et al. 2007). This laser source 

generated laser from a nonlinear optical fiber and it has 

facilitated the idea of a hyperspectral LiDAR (HSL). The 

existing HSL system has wide emission bands and a multi-

channel detector for receiving echo signals, up to 32 channels 

by now (Du Lin et al., 2016; Wang Li et al., 2016). This HSL 

system possesses the high 3-dimensional and abundant spectral 

properties capability, which has been applied in many practical 

fields. Especially in the vegetation biochemical parameter 

estimation, it has showed considerable advantages and potential 

(Hakala et al., 2012; Li et al., 2014; Puttonen et al., 2015; 

Nevalainen et al., 2014).  

 

In this paper, (1) a novel HSL system with supercontinuum 

laser source and 32-channel photosensitive detector array was 

introduced. (2) Rice under different nitrogen fertilization levels 

was employed by HSL to demonstrate the potential of this 

novel system in monitoring nitrogen stress of rice. 

 

2. INSTRUMENT AND EXPERIMENT 

2.1 Description of the instrument 

Figure. 1 is the optical diagram of HSL system. The laser 

emission component of HSL is a wide-band “white” laser with a 

frequency of 20–40 k Hz and a pulse duration of 1–2 ns. The 

spot diameter of this laser is about 10 mm and the divergence 

angle is less than 3 mrad when it is transmitted to the target. A 

2-dimension rotation platform is employed to achieve target 

scanning. Scattering echoes are collected by an achromatic 

telescope whose focal length and diameter are 400 mm, 200 

mm. With collimating and focusing, the echo signals are guided 

into a grating spectrometer which is used for separating light 

echoes and then be converted to electrical signal by a 32-

channels photosensitive array (with the spectral response being 

300–920 nm). The wavelength range of the HSL system is 538-

910 nm. More details can be found in the study of Lin Du et al. 

(Lin et al., 2016). 

 

. . .   
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Figure 1  The optical diagram of the 32-channel HSL system 

 

2.2 Design of the experiments 

The samples are collected from an agricultural production base 

located in SuiZhou city (113°13′26.52″E, 31°39′0.94″N), Hubei 

province of China. Rice varieties is Yongyou 4949 which is 

transplanted into experiment fields cultivated into different 

fertilized levels. Samples were collected on July 16, 2014 and 

August 1, 2014. 

 

Spectrum of rice leaf were collected by using HSL system in 

laboratory. The laser beam perpendicularly illuminate onto the 

leaf surface with a distance of 4 m. A white reference panel 

with a size of 10 cm × 10 cm (>99% reflectance, Spectralon, 

Labsphere, Inc., North Sutton, NH) is first captured to weaken 

the influence instrument’s dark current. The reflectance factor 

of each samples is described as 

 

leaf

white panel

R
R

R
_

                                   (1) 

 

where         Rleaf =  leaf radiance at wavelength λ 

Rwhite_panel =  reference panel radiance at wavelength 

λ. 

 

Eitel et al. (Eitel et al., 2014) used a novel dual-wavelength 

laser system to estimate plant leaf nitrogen content and they 

found that spectrum with mixed targets such as ground and 

crops was different. In addition, they pointed that the inverse 

distance of light could effect the accuracy  of the system. Thus, 

the laser spot in this study resides on the leaf surface 

completely and a black foam sheet with same thickness as the 

white reference panel is pasted back to samples to make sure 

the distance from the target is a constant. Three separate spectra 

from different position of the leaf surface are measured, and at 

each position, there are five spectral scans. Thus, fifteen spectra 

are measured on each leaf sample, which will be averaged as 

the characteristic spectrum of samples. After doing this, the 

total nitrogen contents of each sample is measured by a 

chemical extraction solvent method called Kjeldahl analysis. 

The values of nitrogen content are ranging from 2.0 mg/g to 3.8 
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mg/g, and according to nitrogen fertilizer levels we separate 

these samples into four nitrogen levels, N1 – N4 (listed in Table 

1). The rice sample size in this experiment is 120. Each nitrogen 

level contains 30 samples. Eighty percent of these samples are 

randomly divided chose the (24 × 4) as training data set and the 

remaining 24 as a testset. 

 

Nitrogen level Nitrogen content (mg/g) 

N1 <2.9 

N2 <3.2 

N3 <3.6 

N4 <3.8 

Table 1  Nitrogen content levels measured by Kjeldahl analysis 

method in this study 

 

3. RESULTS AND DISCUSSION 

Reflectance spectra collected by HSL can be used to represent 

the different status of rice because they are related to properties 

of chlorophyll absorption to the incident laser. Many 

researchers pointed that properties of rice reflectance spectra 

will be different under various nitrogen levels (Broge and 

Leblanc, 2001; Zhu et al., 2008). The results of this study 

confirm that this HSL system is credible and accurate. Figure 2 

shows the spectra of rice leaf measured using this HSL system. 

These four spectra are under different nitrogen levels in a 

increasing order of N1 to N4.  

 

 
Figure 2  The spectra of rice leaf measured using  HSL system 

and ASD under different nitrogen levels. 

 

The tendency of the reflectance spectrum in figure 2 is 

consistent with that measured with a spectrometer (Analysis 

Spectral Devices Inc., Boulder, USA), especially near the red-

edge. In the visible band, the reflectance is negatively 

correlated with nitrogen content, whereas positive in near 

infrared band.  

 

Using these credible reflectance spectra under different nitrogen 

levels, this study aims to demonstrate that it has high potential 

for HSL system to distinguish different levels of nitrogen 

fertilization. The classification method is support vector 

machines (SVMs). SVM is a novel intelligent analysis method. 

It is based on the statistical learning theory of Vapnick 

(Vapnick, 1998).  SVM can work well despite of the limited 

size and quality of training samples (Foody and Mathur, 2004; 

Tarabalka et al., 2010).  

 

Channel 

number 

1 2 3 4 5 6 7 8 

Central 

wavelength 

(nm) 

538 550 562 574 586 598 610 622 

Channel 

number 

9 10 11 10 13 14 15 16 

Central 

wavelength 

(nm) 

634 646 658 670 682 694 706 718 

Channel 

number 

17 18 19 20 21 22 23 24 

Central 

wavelength 

(nm) 

730 742 754 766 778 790 802 814 

Channel 

number 

25 26 27 28 29 30 31 32 

Central 

wavelength 

(nm) 

826 838 850 862 874 886 898 910 

Table 2  Centre wavelengths of this HSL system. 

 

Table 2 is the centre wavelength of the 32-channel HSL system 

used in this study. By employed a feature weighting ( R. Huang 

and M. He, 2005), these wavelengths are high nitrogen-

sensitive, which can be represent the nitrogen status of the rice 

leaf samples. Using all of these 32 centre wavelengths to 

classify different leaf samples, the accuracy can be more than 

0.83% (20/24), showed in Figure 3. Concretely, among total 24 

validation samples, there are only 4 wrongly classified samples. 

Three from the N1 and  N2 have been distributed into N3, and 

the one from N3 was labeled with N1. All this results 

demonstrate that this novel HSL system has high potential in 

crops monitoring, especially in distinguishing different  

nitrogen fertilization levels. 

 

 
Figure 2  The real and classified nitrogen levels by using SVMs. 

The points located near the diagonal in figure are the correctly 

classified nitrogen levels. 

 

In this experiment, fifteen separate scans are made on one leaf 

samples, which are then averaged as the characteristic spectra 

of this leaf. This spectra are used to classify different nitrogen 

levels which are measured in biochemical laboratory called 

total nitrogen contents. As we all known, nitrogen in plant has 

various forms, including organic and inorganic nitrogen. Thus, 

a up-scaling method maybe necessary to determine how many 

separate scans are needed to descript the total nitrogen with a 

characteristic spectrum. 
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Although nitrogen has linked to chlorophyll closely, the 

reflectance spectrum represents the interaction between the 

incident laser and chlorophyll after all. Hence, better results 

could been obtained by using spectra collected with HSL to 

estimate chlorophyll content first. And then relationship can be 

founded between nitrogen and chlorophyll content. In this way, 

capability of HSL in nitrogen content of crops may be improved 

significantly.  

 

Moreover, a radiative model, such as the PROSPECT (Gastellu-

Etchegorry et al., 2001), linked these biochemistry parameters 

with spectrum may be a good choice to estimate and validate 

the HSL potential in crops nutrition analysis especially the 

nitrogen.  

 

4. CONCLUSION 

In this study, a novel HSL system has been introduced. This 

HSL system has a wide-band laser source which make it more 

accurate and effective in monitoring crops nitrogen stress than 

the LiDAR used single wavelength. The results demonstrate 

that the HSL system with 32 channels can distinguish different  

nitrogen fertilization levels with a accuracy of 83%. Thus, HSL 

will a high potential active remote sensing method in various of 

application fields, especially in crops nutrition monitoring. 
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