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ABSTRACT: 

 

Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are 

incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such 

as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution 

SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting 

and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools 

for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at 

different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-

8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands 

in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral 

bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data 

using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the 

sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution 

of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands 

in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather 

than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal 

band on board on previous Landsat sensors. Third, TIRS is one of the best space born and high spatial resolution with 30 m. in this 

regards, Landsat-8 can use the Split-Window (SW) algorithm for retrieving SST dataset. Although several SWs have been developed 

to use with other sensors, some adaptations are required in order to implement them for the TIRS spectral bands. Therefore, the 

objective of this paper is to develop a SW, adapted for use with Landsat-8 TIRS data, along with its accuracy assessment. In this 

research, that has been done for modelling SST using thermal Landsat 8-imagery of the Persian Gulf. Therefore, by incorporating 

contemporary in situ data and SST map estimated from other sensors like MODIS, we examine our proposed method with coefficient 

of determination (R2) and root mean square error (RMSE) on check point to model SST retrieval for Landsat-8 imagery. Extracted 

results for implementing different SW’s clearly shows superiority of utilized method by R2=0.95 and RMSE=0.24. 

 

 

1. INTRODUCTION 

The ocean surface is a point connecting of the Earth’s climate 

system: the oceans and atmosphere. Heat around the earth planet 

transferred by oceans and atmosphere and interactions between 

the two systems makes the Earth’s surface habitable. Heat 

exchange between the ocean and atmosphere is determined by 

moisture, gases (such as CO2) and sea surface temperature 

(SST)[1]. SST is one of the most important parameters in 

oceanography and marine meteorology. The SST values are used 

as boundary conditions for modelling of the atmosphere and 

oceans. Also, the SST values use for confirming these model 

outputs. The high-resolution maps of SST can show ocean 

surface currents and eddies. Near-real time (NRT)  processing of 

SST is practical for fisheries and meteorological forecasts[2].  

Determination of SST using satellite remote sensing have two 

main advantages. First, the high-resolution global coverage 

provided by a single sensor, or suite of sensors on similar 

satellites, that produces a consistent data set. Second, temperature 

is a physical variable that can be measured with relative ease. It 

can also be measured to useful accuracy by instruments on 

observation satellites[1].  

*  Corresponding author 

When the spatial distribution of surface temperature on a wide 

areas and at the same time is required, remote sensing technology 

will show their capabilities. 

Research on modeling SST using Landsat-8 imagery is important 

because of two reasons: first, Landsat-8 imagery has two thermal 

bands and thus it has a high potential for modeling surface 

temperature using multiband algorithms. Second, determination 

of SST is applicable and important that due to the high spatial 

resolution Landsat-8 satellite images the possibility of studying 

on the coastal areas is also provided. 

In Remote Sensing, to estimate the surface temperature it is 

required that satellite images have appropriate temporal and 

spatial resolution. Thermal bands of remotely sensed images use 

radiative transfer equation that related to surface temperatures. 

Since the mid-1970s ,the calculation of SST using thermal 

infrared data sets started and by development of measurement 

tools increased accuracy of these calculations [3]. 

In recent decades, estimation of surface temperature through 

satellite data has improved and different algorithms to determine 

the temperature is presented by different sensors. The basis of 

these algorithms are based on assumptions and approximations 

variety of radiation equation. These algorithms can be divided 

into three general categories[4]: 1) Single-Channel (SC) 
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methods, 2) Split Window (SW) methods and 3) Dual Angle 

(DA) methods. 

The SW methods have two main advantages comparing with 

other methods. First, this method does not require accurate 

atmospheric profiles. Second, this method has high performance 

for all sensors with at least two thermal bands [5]. In this study, 

we investigated split window methods for Landsat-8 imagery 

since it is first satellite of the Landsat series with high resolution 

which has two thermal bands. The SW methods reduce 

atmospheric effects by using a combination of thermal bands 

close in the atmospheric window at 10 and 12 μm [6]. Many 

researchers are provided numerous algorithms for different 

sensors to estimate SST and gained various precision. Number of 

these algorithms are shown in Table 1. 

 

Table 1. Different split window algorithm customized in this study. 

By Split Window Algorithm (SWA) 

[7] MCSST = a0 + a1Ti + a2(Ti − Tj) 

[8] NLSST = a0 + a1Ti + a2(Ti − Tj)(MCSST) 

[9] Ts = a0 + a1Ti + a2(Ti − Tj) + a3(Ti − Tj)
2 

 

2. STUDY AREA 

The Persian Gulf, one of the most critical bodies of water, is 

positioned in the heart of the Middle East. Located in south 

western Asia, it separates the Arabian Peninsula from Iran 

(Figure 1). The small freshwater inflow into the Persian Gulf is 

mostly from the Tigris, Euphrates, and Karun rivers. Surface-

water temperatures range from 24 to 32 °C in the Strait of 

Hormuz from 16 to 32 °C in the extreme northwest. These high 

temperatures and a low influx of fresh water result in evaporation 

in excess of freshwater inflow; high salinities result, ranging from 

37 to 38 parts per thousand in the entrance to 38 to 41 parts per 

thousand in the extreme northwest. Even greater salinities and 

temperatures are found in the waters. 

In this paper part of north Persian Gulf region is used as study 

area. Also, Landsat-8 imagery from this area is incorporated as 

image data set (Figure 1).  

 

 

Figure 1. Study area in Persian Gulf region 

3. IMAGE DATA SETS 

In recent decades, sensors, such as the Moderate-resolution 

Imaging Spectroradiometer (MODIS) and the Advanced Very 

High Resolution Radiometer (AVHRR), measure thermal data 

twice a day using two long-wave infrared (LWIR) bands. Also 

Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+) measure thermal data using just 

one long-wave infrared (LWIR) band, with a higher spatial 

resolution but with a 16-day temporal resolution. Since satellite 

remote sensing provides a repetitive synoptic view in short 

intervals of the Earth’s surface, it is a vital tool for monitoring 

surface temperature. The relative spectral response of the TIRS 

bands for some other sensors are presented in Figure 2. As it is 

clear from Figure 2, most of sensors have same regions 

wavelength in thermal spectrum mainly near 10 and 12 μm. 

 

 
Figure 2. TIRS, MODIS and ETM+ relative spectral response 

functions (the data can be seen in[10]) 

3.1 Landsat-8 imagery 

Landsat-8 was successfully launched on 11 February 2013 and 

deployed into orbit with two instruments on-board: (1) the 

Operational Land Imager (OLI) with nine spectral bands in the 

visual (VIS), near infrared (NIR), and the shortwave infrared 

(SWIR) spectral regions; and (2) the Thermal Infrared Sensor 

(TIRS) with two spectral bands in the LWIR. The relative 

spectral response of the TIRS bands is presented in Figure 3. The 

two TIRS bands were selected to enable the atmospheric 

correction of the thermal data using a split window algorithm 

(SWA) [11],[12]. The use of two separate, relatively narrow, 

thermal bands has been shown to minimize the error in the 

retrieval of surface temperature [13]. The spatial resolution of 

TIRS data is 100 m with a revisit time of 16 days, and as a result, 

applications are different than those of other sensors with coarser 

spatial resolutions and shorter revisit times. While Landsat-8 

images are already freely distributed through the U.S. Geological 

Survey (USGS), to the best of our knowledge, no SWA for 

surface temperature retrieval from TIRS has been published. 

Although several SWAs have been developed for use with other 

sensors [14], [15], [16], [17], some adaptations are required in 

order to implement them for the TIRS spectral bands. Therefore, 

the objective of this letter is to develop a SWA, adapted for use 

with Landsat-8 TIRS data, along with its accuracy assessment. 

Landsat-8 TIRS bands’ relative spectral response functions are 

shown in figure 3. 

 
Figure 3. Landsat-8 TIRS bands’ relative spectral response 

functions (the data can be seen in[18]). 
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The dataset used in this study included images of December 10, 

2014, January 27 and 28 February 2015. 
 

3.2 MODIS Datasets 

MODIS is a key instrument aboard the Terra (originally known 

as EOS AM-1) and Aqua (originally known as EOS PM-1) 

satellites. Terra's orbit around the Earth is timed so that it passes 

from north to south across the equator in the morning, while Aqua 

passes south to north over the equator in the afternoon. Terra 

MODIS and Aqua MODIS are viewing the entire Earth's surface 

every 1 to 2 days, acquiring data in 36 spectral bands, or groups 

of wavelengths (see MODIS Technical Specifications). These 

data will improve our understanding of global dynamics and 

processes occurring on the land, in the oceans, and in the lower 

atmosphere. MODIS is playing a vital role in the development of 

validated, global, interactive Earth system models able to predict 

global change accurately enough to assist policy makers in 

making sound decisions concerning the protection of our 

environment[19]. 

The bands used for SST measurement are in the atmospheric 

‘windows’ at wavelengths of 3.5 to 4.2 µm and 10 to 12 µm. 

There are two spectral bands (numbered 31 and 32) in the longer 

wavelength window, which correspond closely to the 

corresponding AVHRR channels (AVHRR channels 4 and 5), 

but there are three in the mid-infrared window (bands 20, 22 and 

23) where AVHRR has just one (AVHRR channel 3). This Level 

2 and 3 product provides sea surface temperature at 1-km (Level 

2) and 4.6 km, 36 km, and 1° (Level 3) resolutions over the global 

oceans[20]. This products provide accuracy of sea surface 

temperature about 0.3-0.5 k[3]. Spectral response functions for 

some sensors are shown in Figure 4. 

 

 
Figure 4. Spectral response functions for the Terra MODIS 

bands used for retrieving SST, with the Planck Function for 

temperatures 0, 10, 20 and 30oC. The emission at ~4μm is 

much smaller than at 10-12μm (the data can be seen in[20]). 

 

4. EXPERIMENT AND RESULT 

In this study, the MCSST, NLSST and Coll and Caselles 

algorithm coefficients were retrieved at Persian Gulf using 

LandsaT-8 imagery. The algorithm coefficients were derived 

from the regression between the SST MODIS data at Persian Gulf 

and nearly coincident satellite data. The satellite data used for 

regression was brightness temperature of channel 10 (T10) and 

channel 11 (T11) for Landsat-8 image. The SST data was 

estimated by MCSST, NLSST and Coll and Caselles algorithms 

with new calibrated algorithm coefficients. Flowchart of the 

algorithm to be performed during SST estimation using TIRS 

bands 10 and 11 are shown in Figure 5. 

 
Figure 5. Flowchart of SST retrieval 

To evaluate the performance of any regression models, two 

independent data which includes training data to generate models 

and testing data for model evaluation are required. On this basis, 

data were divided random into two groups. The first group 

includes 30% of data and this group was used for training. The 

other group includes 70% of the remaining data which was 

regarded to testing the model. On this basis, we obtained 

coefficients of different algorithms using training data for the 

study area and evaluated them with testing data. Estimated 

coefficients for MCSST, NLSST and Coll and Caselles 

algorithms are shown in Table 2.  

Table 2. Estimated coefficients for MCSST, NLSST and Coll and 

Caselles algorithms 

Coefficients Coll and Caselles  MCSST NLSST 

a0 8.914 5.1424 8.9542 

a1 0.86421 0.95578 0.86254 

a2 -6.3454 0.83653 -6.4465 

a3 3.3997 - 0.004278 

a4 - - 3.4108 

 

The results of evaluation using training data sets (30% of data) 

and testing data sets (70% of data) are shown in Table 3. 

 
Table 3. Estimated RMSE and R2 values for MCSST, NLSST and 

Coll and Caselles algorithms for training and testing data sets. 

Algorithms Data sets RMSE )2(R Squared-R 
Coll and 

Caselles  
Training 0.243 0.949 
Testing 0.242 0.949 

MCSST 
Training 0.361 0.887 
Testing 0.360 0.887 

NLSST 
Training 0.243 0.949 

Testing 0.243 0.949 
 

 

Comparison of the amount of RMSE and R2 for training and 

testing data sets (are shown in Tables 3) are showing high 

accuracy of proposed models. Also, the histograms of residuals 

for the SST calculated by the new calibrated MCSST, NLSST 

and Coll and Caselles algorithms were shown in Figure 6. This is 

clear from Figure 6 that, all three related histograms compatible 

with Gaussian distribution function.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-1107-2016 

 
1109

http://terra.nasa.gov/
http://aqua.nasa.gov/


   
a) b) c) 

Figure 6. Histograms of residual temperatures using the split-

window algorithm; a) Coll and Caselles; b) MCSST; c) 

NLSST 

 

5. CONCLUSION 

In this study, Landsat-8 imagery used as the Split-Window (SW) 

algorithms for retrieving SST data set. Although several SWs 

(Table 1) have been developed to use with other sensors, some 

adaptations are required in order to implement them for the TIRS 

spectral bands. Therefore, the objective of this paper is to develop 

a SW, adapted for incorporating Landsat-8 TIRS imagery, along 

with its accuracy assessment. Also in this research, the Persian 

Gulf region was used as study area and for modeling SST derived 

from thermal Landsat 8-imagery. Therefore, by incorporating 

contemporary in situ data and SST map estimated from other 

sensors like MODIS, we examine our proposed method with 

coefficient of determination (R2) and root mean square error 

(RMSE) on check point to model SST. Extracted results for 

implementing different SW’s clearly shows superiority of 

utilized method by R2=0.95 and RMSE=0.24 kelvin for NLSST 

algorithm and Coll and Caselles algorithm. Comparison of 

RMSE and R-Squared are shown in Figure 7. 

 
Figure 7. Comparison between RMSE and R-Squared 

 

Thus we can use implemented model for the study area by 

NLSST and Coll and Caselles algorithms as a model with high 

efficiency for modeling SST using Landsat-8 imagery. 
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