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ABSTRACT: 

 

Traditional remote sensing approach for mapping aquaculture ponds typically involves the use of aerial photography and high 

resolution images.  The current study demonstrates the use of object-based image processing and analyses of LiDAR-data-generated 

derivative images with 1-meter resolution, namely: CHM (canopy height model) layer, DSM (digital surface model) layer, DTM 

(digital terrain model) layer, Hillshade layer, Intensity layer, NumRet (number of returns) layer, and Slope layer.  A Canny edge 

detection algorithm was also performed on the Hillshade layer in order to create a new image (Canny layer) with more defined edges.  

These derivative images were then used as input layers to perform a multi-resolution segmentation algorithm best fit to delineate the 

aquaculture ponds. In order to extract the aquaculture pond feature, three major classes were identified for classification, including 

land, vegetation and water. Classification was first performed by using assign class algorithm to classify Flat Surfaces to segments 

with mean Slope values of 10 or lower.  Out of these Flat Surfaces, assign class algorithm was then performed to determine Water 

feature by using a threshold value of 63.5.  The segments identified as Water were then merged together to form larger bodies of 

water which comprises the aquaculture ponds. The present study shows that LiDAR data coupled with object-based classification 

can be an effective approach for mapping coastal aquaculture ponds. The workflow currently presented can be used as a model to 

map other areas in the Philippines where aquaculture ponds exist. 

 

 

 

* Corresponding author 

1. INTRODUCTION  

For more than half a century, remote sensing imagery has been 

acquired by a multitude of airborne and space-borne sensors 

having multispectral sensors with wavelengths ranging from 

visible to microwave, and with spatial resolutions ranging from 

sub-meter to kilometers (Navulur, 2006, Xie et al., 2008).  The 

popular type of remotely sensed data for extraction of land 

cover features to date are either high-resolution (e.g., 

WorldView, Quickbird or IKONOS) or medium resolution (e.g. 

Landsat, ASTER or SAR) satellite imagery (Travaglia et al., 

2004; Xie et al., 2008). 

 

A recent technology for mapping land covers and water uses 

LiDAR (Light Detection and Ranging) system that is mounted 

on an aircraft.  Current use of LiDAR data includes not only for 

safe marine navigation but also in support of a wide array of 

coastal science and management applications (Parrish et al., 

2010; Travaglia, et al., 2004).  The operation is more localized 

and the cost is also relatively cheaper. 

 

In the past, remote sensing has been carried out in the past 

decades to monitor mangroves and its conversion to brackish 

water aquaculture ponds (Shi et al., 2009).  It has been widely 

accepted that remote sensing plays an important role for 

producing fast, detailed and accurate coastal land cover and 

land use maps: an essential component for supporting 

ecological understanding, conservation management and in 

improving coastal regulation (Terchunian et al., 1986; Parrish et 

al., 2010).  With advances in LiDAR technology, it is now 

possible to map terrestrial and coastal resources with precision 

and with increasing frequency in emerging economies such as 

the Philippines. 

 

There have been numerous studies focused on identifying land 

covers using object-based analysis of LiDAR data (Navulur, 

2006; Miliaresis, 2007).  However, less focus has been done on 

extracting aquaculture pond features using object-based 

analysis. 

 

This paper reports on a specific approach to a method for 

undertaking high resolution mapping of aquaculture ponds.     

 

 

2. METHODOLOGY  

2.1 Study Area 

The coastal area of Carcar City in the province of Cebu was the 

subject of research in this study.  Cebu is one of the four 

provinces in Central Visayas, Philippines.  The length of the 

coastal area in Carcar City is about 16 km. 
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2.2 Data 

The data comprise a 3-band digital orthophotograph and 

LiDAR point cloud LAS file from Phil-LiDAR 2 Program 

“Nationwide Detailed Resources Assessment Using LiDAR.”  It 

is a national program funded by the Department of Science and 

Technology (DOST), Republic of the Philippines. 

 

2.3 Data Preparation 

Using LAStools software, LiDAR point cloud data were 

prepared for processing derivative layers such as CHM (canopy 

height model), DSM (digital surface model), DTM (digital 

terrain model), Intensity, Slope, Hillshade, and NumRet 

(number of returns).  These layers are projected images (WGS 

84 UTM Zone 51 projection) with a 1 meter-per-pixel 

resolution. 

 

The generated LiDAR derivative layers are in tiles of 1km-by-

1km dimensions.  Since the focus of this study is per coastal 

municipality, tiles that were adjacent to each other were then 

sorted out and merged to form larger layers. This was done by 

using the Mosaic to New Raster Tool in ArcGIS 10.2 with a 

minimum of 2 and maximum of 12 tiles per layer.  The 

orthophotographs of the corresponding LiDAR derivative tiles 

were also sorted out and merged using the same procedure. 

 

2.4 Image Processing 

Segmentation and classification of the LiDAR derivative layers 

were performed using the Object-Based Image Analysis (OBIA) 

tools in the eCognition Developer 64 software version 9.0. As 

an added feature image layer, a Canny layer was generated by 

applying edge extraction canny (Canny’s algorithm) on the 

Hillshade derivative layer (Canny, 2009).  Automated 

classification was performed for the extraction of Land, 

Vegetation and Water features (See Fig. 1a). 

 

 

Figure 1a. Detailed workflow of Land, Vegetation and Water 

feature extraction. 

 

The second phase of the workflow used manual classification 

for the refinement of the classified segments.  However, another 

set of automated classification was performed for the extraction 

of the aquaculture ponds (see Fig. 1b). 

 

Figure 1b. Detailed workflow of Aquaculture ponds (fishpond) 

feature extraction. 

 

2.4.1 Segmentation 

 

In order to estimate the most appropriate combination of 

weights to be used for each LiDAR derivative layer when doing 

the multi-resolution segmentation algorithm, the said algorithm 

was first performed to each LiDAR derivative layer using 

uniform parameters.  This was done in order to find which 

LiDAR derivative layers were able to delineate the boundary of 

aquaculture ponds (or fishponds in local dialect) from their 

neighbouring features (see Fig. 2).  

 

 
Figure 2. Segmentation results for each LiDAR derivative using 

default settings for multi-resolution segmentation algorithm in 

eCognition (scale parameter: 10; shape: 0.1; compactness: 

0.5). 

 

From purely visual inspections, the following weights were 

established: Slope (7), Hillshade (5), Intensity (3), CHM (2), 

NumRet (1), DSM (1), DTM (1), Canny (1) and 

Orthophotographs (1).  It may be noteworthy to point out that 

the orthophotographs were given only the minimum weight, not 

for their effectiveness in terms of delineation but rather on the 

merits of their availability (since some LiDAR data lack 

corresponding orthophotographs).  Using the above LiDAR 

derivative layers with their corresponding weights, a multi-

resolution segmentation algorithm was done (scale parameter: 

20; shape: 0.3; compactness: 0.1). 
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2.4.2 Classification 

  

From the segmented objects, it was established that flat surfaces 

such as roads, wetlands, the sea, fishponds, and rice fields have 

mean slope values less than or equal to 10.  Hence, the value of 

10 was used as a maximum threshold for the assign class 

algorithm to classify Flat Surfaces.  

 

Fishponds surroundings are commonly vegetated.  Majority of 

the surrounding vegetation have mean CHM values not lower 

than 1.5.  Hence, the value of 1.5 was used as a maximum 

threshold for the assign class algorithm to classify Vegetation.    

 

Most bodies of water have mean CHM values not more than 

0.2.  However, built-up areas have negative mean CHM values.  

Using 0.2 as a maximum threshold to assign the remaining 

unclassified segments to Water would also mean that the said 

built-up will also be erroneously classified as Water. To avoid 

this, a second condition was made which is to limit such 

classifications to unclassified segments with relative borders to 

segments already classified as Water. With this algorithm, Flat 

Surfaces can also be included in the class filters.  Furthermore, 

an intermediate step using mean DSM values was employed.  A 

value of 65 was used as a maximum threshold for the assign 

class algorithm using mean DSM values to define the said 

unclassified segments as Vegetation. What remains now are the 

unclassified bodies of water or fields with mean CHM values 

less than 0.2.  This value was then used as a maximum 

threshold to assign the remaining unclassified segments to 

Water.   

 

The last step before the manual classification procedure was the 

conversion of all unclassified segments as well as the Flat 

Surfaces to Land class. 

 

The neighbouring segments of the same class were then merged 

together to form larger segments.  Bodies of water which were 

part of the sea will have the same Water feature classification as 

those on aquaculture ponds.  To determine the segments 

classified as Water that are part of the aquaculture ponds, a 

filtering algorithm was performed to discard these segments by 

excluding Water features with pixel value more than 1,000,000 

pixels (most aquaculture pond areas were around 1,000,000 

pixels or less). 

 

2.5. Validation 

 

To confirm the accuracy of the classified aquaculture ponds, 

field validation was conducted.  Ocular inspections were mostly 

limited only at the boundaries of the aquaculture ponds because 

most of the aquaculture ponds were privately owned. The 

validation points were further verified by visual inspection of 

the orthophotographs. 

 

 

3. RESULTS 

 

3.1 Fishpond Feature Extraction 

In the first classification of Flat Surface, it was observed that 

segmented objects corresponding to water regions have mean 

slope values greater than 100. Hence, the value of 100 was used 

as a maximum threshold value for a second assign class 

algorithm to classify Flat Surfaces, respectively (see Fig. 3).   

 

 
Figure 3.  Orthophotographs before (A) and after (B) multi-

resolution segmentation. Flat Surfaces classification using 

assign class algorithm with mean Slope maximum and 

minimum threshold values of 10 (C) and then 100 (D). 

 

The second classification made was from class Flat Surfaces. 

Using the assign class algorithm all Flat Surfaces that have 

Mean DSM values of 63.5 or lower were classified as Water 

(see Fig. 4).  

 

 
Figure 4. Flat Surfaces (D) to Water (E) object classification 

using assign class algorithm with mean DSM maximum 

threshold value of 63.5. 

 

One feature observed during image processing was how well the 

dikes defined the boundaries of the aquaculture ponds, which 

were mostly buffered with vegetation.  Identifying the 

Vegetation feature around the aquaculture ponds significantly 

aided in defining their boundaries and dikes.  Majority of these 

vegetation have mean CHM values not lower than 1.5.  Hence, 

the value of 1.5 was used as a maximum threshold for the assign 

class algorithm to classify Vegetation (see Fig. 5). 

 

 
Figure 5. Segments before (A) and after (B) Vegetation 

classification using assign class algorithm with mean CHM 

minimum threshold value of 1.5. 

 

Looking back on the threshold values used to generate Flat 

Surfaces class, we can determine that segments with mean slope 

values of 10 to 100 were excluded.  There were also segments 

that may be excluded from the classification of Vegetation since 

the minimum mean CHM threshold value used was 1.5.  Most 

bodies of water have mean CHM values not more than 0.2.  

However, built-ups have negative mean CHM values.  Using 

0.2 as a maximum threshold to assign the remaining 

unclassified segments to Water would also mean that the said 

D E 

A B 

D C 
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built-ups will also be erroneously classified as Water.  To avoid 

this, a second condition must be made which is to limit such 

classifications to unclassified segments with relative borders to 

segments already classified as Water (see Fig. 6).  With this 

algorithm, Flat Surfaces can also be included in the class filters. 

 

 
Figure 6. Water classification using assign class algorithm with 

mean CHM maximum threshold value of 0.2 and a 2nd 

condition of relative border to Water of 0.15. 

 

Despite the previous step, there still remain unclassified 

segments at this point of the process which were Water feature 

upon cursory inspection in the orthophotographs (see Fig. 7C). 

These segments are those with no relative borders with 

segments already classified as Water.  Most of these 

unclassified segments again have mean CHM values lesser than 

0.2.  However, as previously stated, built-ups such as houses 

have negative mean CHM values.  So if we classify all the 

remaining unclassified segments as Water immediately, the said 

built-ups will be erroneously classified as Water because they 

also have CHM values lesser than 0.2 (see Fig. 7X). 

 

 
Figure 7. Water classification using assign class algorithm with 

mean CHM maximum threshold value of 0.2. 

 

To avoid this, an intermediate step using mean DSM values 

must be employed.  A value of 65 was used as a maximum 

threshold for the assign class algorithm using mean DSM values 

to define the said unclassified segments as Vegetation (see Fig. 

8). Note that this particular study only focused on the extraction 

of aquaculture ponds so it was only for reasons of simplification 

that the said built-ups were classified to Vegetation and not to 

an additional but unnecessary feature classification. 

 

 
Figure 8. Vegetation classification using assign class algorithm 

with mean DSM minimum threshold value of 65. 

 

Using the mean CHM values less than 0.2 as a maximum 

threshold to assign the remaining unclassified segments to 

Water precisely classified the previously unclassified bodies of 

water without including the built-ups (see Fig. 9). 

 

 
Figure 9. Water classification using assign class algorithm with 

mean CHM maximum threshold value of 0.2. 

 

The last step before the manual classification procedure was the 

conversion of all unclassified segments as well as the Flat 

Surfaces to Land class.  With this step, there were only 3 

classifications left for the segments namely Land, Vegetation, 

and Water (see Fig. 10). 

 

 
Figure 10. Classification using assign class algorithm 

converting all unclassified segments and Flat Surfaces class (E) 

to Land class (F). 

 

Bodies of water which were part of the sea have the same Water 

feature classification as those on aquaculture ponds (see Fig. 

11a). 

 

 
Figure 11a.  Image showing segments classified as Water for 

both sea and aquaculture ponds.  

 

Since the segments classified as Water were already identified, 

what was left was to separate the Water segments considered to 

be part of the aquaculture ponds.  In order to do that, the 

neighbouring segments of the same class were then merged 

together to form larger segments of the same Water 

classification (see Fig. 11b).   

 

C X 
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Figure 11b.  Image showing merged segments classified as 

Water for both sea and aquaculture ponds.  

 

This was done since Water segments greater than 1,000,000 

pixels represented the sea, hence classified as Sea (see Fig. 

11c). 

 

 
Figure 11c.  Image showing extracting the sea. 

 

Despite the extraction of sea, there were still Water segments 

which did not belong to the aquaculture ponds (see smaller 

Water segments of Fig. 11c).  Water segments with number of 

pixels small than 20,000 were reclassified to Vegetation (see 

Fig. 11s), which left the remaining segments classified as Water 

to be those of the aquaculture ponds. 

 

  
Figure 11d.  Image showing extracting the aquaculture ponds. 

 

3.2 Aquaculture Pond Validation 

The aquaculture pond features were quite easy to identify 

except for those in close proximity with the rice fields.  The 

field validation was necessary to verify aquaculture ponds from 

the neighbouring rice fields (see Fig. 11).  Rice fields have 

similar characteristics with aquaculture ponds, especially those 

ponds in which seawater was fully or partially drained. 

 

 
 

 
Figure 11. Validation points (red dots) overlaid on the 

orthophotographs. 

4. CONCLUSION 

 

LiDAR point cloud data was successfully utilized in the 

extraction of aquaculture pond features (fishponds) with 

minimal use of orthophotographs.  The use of LiDAR 

derivatives in the analysis and classification of aquaculture 

pond feature extraction was also successfully implemented by 

carefully choosing their appropriate weights in the 

multiresolution segmentation process.  The final process 

generated three classifications namely Water, Land and 

Vegetation. 
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