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ABSTRACT: 

 

With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based 

model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data 

reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this 

system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the 

models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in 

related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by 

Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point 

clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the 

building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode 

both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database 

and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry 

surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. 

Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are 

retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 

900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear 

superiority over related methods. 

 

 

1. INTRODUCTION 

Recent development in modeling and scanning techniques has led 

to an increasing number of 3D models. Many of these 3D models 

is free in the Internet to access. In this context, the question of 

‘‘How to generate 3D building models?’’ has evolved to ‘‘How 

to find them in model database and WWW?’’ (Funkhouser et al., 

2003). This study aims at the efficient construction of a cyber city 

by encoding unorganized, noisy, and incomplete building point 

clouds acquired by airborne LiDAR, as well as by retrieving 3D 

building models from model databases or from the Internet. In 

this scheme, a complete or semi-complete building model in 

databases or in the Internet is reused rather than reconstructing 

point cloud. 

 

The main theme of model retrieval is accurate and efficient 

representation of a 3D shape. Most previous studies focus on 

encoding and retrieving 3D polygon models using polygon 

models as input queries (Funkhouser et al., 2003; Assfalg et al., 

2007; Gao et al., 2011; Akgul et al., 2009; Gao et al., 2012). 

However, these studies do not consider model retrieval by using 

point clouds, which is in a great need in the topic of efficient 

cyber city construction with airborne LiDAR point clouds. The 

key idea behind the proposed method is to represent point clouds 

of building roofs by using top-view depth image. Building roof 

is the most informative part of a building in airborne LiDAR 

point clouds, as shown in Figure 1. In addition, the use of 

building roof in data encoding can avoid the difficulty coming 

from the insufficient sampling on the side-view of buildings. A 

point cloud is encoded by geometric features of its depth image, 
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which has the properties of rotation-invariance and noise-

insensitivity. In addition, the proposed depth image encoding 

method reduces data description dimensions and yields a 

compact shape descriptor, resulting in both storage size and 

search time reduction. 

 

Following the categorization in (Akgul et al., 2009), 3D model 

retrieval methods are classified into two categories, model-based 

retrieval and view-based retrieval. For model-based retrieval, 

shape similarities are measured by using various geometric shape 

descriptors including shape distribution (Assfalg et al., 2007; 

Akgul et al., 2009), spherical harmonic function (Chen et al., 

2014; Mademlis et al., 2009), shape topology (Tam and Lau, 

2007), shape spectral (Jain and hang, 2007), and radon transform 

(Daras et al., 2006). In the topology-based method (Tam and Lau, 

2007), model topologies are represented as skeletons/graphs. The 

methods rely on the fact that the skeleton is a compact shape 

descriptor, and assume that similar shapes have similar skeletons. 

These conditions enable a topology-based method to facilitate 

efficient shape matching. In the methods of shape distribution 

(Assfalg et al., 2007; Akgul et al., 2009), geometric features are 

accumulated in bins that are defined over feature spaces. A 

histogram of these values is then used as the signature of a 3D 

model. In the transformation-based methods (Chen et al., 2014; 

Jain and hang, 2007; Daras et al., 2006), 3D shapes are 

transformed to other domains, and transformation coefficients 

are used in shape matching and retrieval. Among them, 

transformation using spherical harmonic functions is the typical 

transformation. By utilizing the advantages of compact shape 
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description and rotation invariant, models can be efficiently 

retrieved. 

 

For view-based retrieval, 3D shapes are represented as a set of 

2D projections and 3D models are matched using their visual 

similarities rather than the geometric similarities (Gao et al., 2011; 

Gao et al., 2012; Chen et al., 2003; Stavropoulos et al., 2010; 

Papadakisa et al., 2007). Each projection is described by image 

descriptors. Thus, shape matching is reduced to measure 

similarities between views of the query object and those of the 

models in the database. Although methods based on projected 

views can yield good retrieval results, a large number of views 

may degrade retrieval efficiency. 

 

 
Figure 1. Airbore LiDAR point cloud. The perspective view (left), 

top view (middle), and side view (right) of point cloud. 

 

The related model-based and view-based methods perform very 

well on existing benchmarks for encoding and retrieving 3D 

polygon models. However, these methods cannot be applied to 

unorganized, noisy, sparse, and incomplete 3D point clouds. In 

this study, a combination of shape distribution and visual 

similarity is proposed to encode LiDAR point clouds with sparse, 

noisy, and incomplete sampling. The top-view depth image is 

used only for visual similarity because of the incomplete 

sampling on side-view of buildings. Furthermore, the distribution 

of geometric shape in the depth image is represented as encoded 

features for the matching of the input point cloud and building 

models in the database. These strategies enable the proposed 

method to consistently and accurately encode both the point 

cloud and polygon models, making model retrieval from airborne 

LiDAR point cloud and data reuse feasible. The remainder of this 

paper is organized as follows. Section 2 describes the 

methodology of point cloud encoding and building model 

retrieval. Section 3 discusses the experimental results, and 

section 4 presents the conclusions. 

  

2. METHODOLOGY 

2.1 System Overview 

The system overview is as shown in Figure 2. The proposed 

building model encoding consists of two main components, data 

encoding and data retrieval. For data encoding, both the building 

models and point clouds, that is, the input query, are consistently 

encoded by a set of geometric features of depth images. To 

achieve consistency in encoding, an interpolation is applied to the 

depth image of a point cloud. This process enables building 

models and point clouds to have similar samplings, which 

facilities consistent encoding. For data retrieval, a LiDAR point 

cloud is selected as a query input to retrieve building models in 

the database. The data are retrieved by matching the encoded 

coefficients of point clouds and building models.  

 

 
Figure 2. System overview. 

 

2.2 Building Model Encoding 

As a preprocessing, a top-view depth image is obtained by setting 

the projection plan to be the xy-plane, and the origins of the 

building models and the input point cloud are consistently set to 

the center of the 3D shape volume. Given the pixels in depth 

image {(𝑥𝑘 , 𝑦𝑘 , 𝑑𝑘)}𝑘=1
𝑛  where 𝑛 represents the number of pixels 

in the depth image and 𝑑𝑘  denotes the pixel depth, the shape 

origin (𝑥0, 𝑦0, 𝑧0) is defined as calculating the weighted position 

in the depth image, that is, 

 

(𝑥0, 𝑦0, 𝑧0) =
1

𝑛
∑ (𝑥𝑘, 𝑦𝑘 , 𝑑𝑘) × 𝑑𝑘

𝑛
𝑘=1                   (1) 

 

Both the point cloud and building model is moved to the shape 

origin (𝑥0, 𝑦0, 𝑧0) prior to the encoding. This process can reduce 

sensitivity to the 3D object origins in depth image generation and 

encoding. 

 

Spatial histogram is used as features to represent 3D shape, in 

which geometric features are accumulated in spinning bins 

centered on the shape origin, as shown in Figure 3. In this study, 

three features are used, that is, height feature, edge feature, and 

eigen feature. These features are described as follows. 

 

2.2.1 Height Feature: The roof information is represented as 

pixel height in the depth image. Therefore, pixel height is used as 

feature in shape matching. An example of height feature 

histogram is shown in Figure 3. 

 

 

Figure 3. Result of height feature. 

 

2.2.2 Line Feature: To extract line features of the depth 

image with inherent noises, the Laplacian of Gaussian (LoG) 

filter is adopted. In LoG filter, the Laplacian filter is second 

derivative filter used to find rapid changes in the depth image and 

the Gaussian filter is used to suppress noises. An example line 

feature extract and line feature histogram is shown in Figure 4. 

 

1 2 3 4 5 6 7 8 9 10

H
is

to
g

ra
m

Spatial Histogram

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-1237-2016 

 
1238



 

Figure 4. Result of line feature. 

 

2.2.3 Eigen Feature: Eigen-features from the principal 

component analysis of a point set are useful geometric features 

that can describe the local geometric characteristics of a point set 

and indicate whether the local geometry is linear, planar, or 

spherical. In this study, the eigen-features of depth image is 

extracted and used as features for encoding. Given a 3D point set 

𝐏 = {(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖)}
𝑖=1
𝑛𝑘 within a circle of diameter r centered at pixel 

𝑝𝑐: (𝑥𝑐 , 𝑦𝑐) of the depth image,  an efficient method to compute 

the principal components of the point set P is to diagonalize the 

covariance matrix of P. In matrix form, the covariance matrix of 

P is written as 

 

𝐂(𝐏) = ∑ (𝑝𝑖 − 𝑝𝑐)𝑇
𝑝𝑖∈𝐏 (𝑝𝑖 − 𝑝𝑐)                  (2) 

 

The eigenvectors and eigenvalues of the covariance matrix are 

then computed by using matrix diagonalization technique, that is, 

 

                𝐕−1𝐂𝐕 = 𝐃,                                   (3) 

 

where D is the diagonal matrix containing the eigenvalues 
{𝜆1, 𝜆2, 𝜆3} of C, and V contains the corresponding eigenvectors. 

The obtained eigenvalues are greater than or equal to zero, that 

is, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 , because the covariance matrix is a 

symmetric semi-positive matrix. In geometry, the eigenvalues 

relate with an ellipsoid that represents the local geometric 

structure of a point set. 𝜆1 ≥ 𝜆2, 𝜆3   represents a stick-like 

ellipsoid, meaning a linear structure such as building edges. 𝜆1 ≅
𝜆2 >>  𝜆3  indicates a flat ellipsoid, representing a planar 

structure. 𝜆1 ≅ 𝜆2 ≅  𝜆3  corresponds to a volumetric structure 

such as corners of buildings. Some combinations of these 

eigenvalues provide discriminant geometric features, especially 

for the point clouds in urban areas. Following the definitions in 

(Gross and Thoennessen, 2006), the eigen-features of planarity 

𝑃𝜆 is defined as 

 

 𝑃𝜆 = (𝜆2 − 𝜆3) 𝜆1⁄ .                              (4) 

 

The planarity feature has the ability to enhance planar structures. 

An example of eigen-feature histogram is shown in Figure 5. 

 

 

Figure 5. Result of eigen-feature. 

 

2.3 Encoding and Indexing 

By combining the all geometric features, a point cloud or polygon 

model S is encoded as 

 

𝐹(𝐒) = {(ℎ1, ⋯ , ℎ𝑘), (𝑙1, ⋯ , 𝑙𝑘), (𝑒1, ⋯ , 𝑒𝑘)},         (5) 

 

where  ℎ , 𝑙 , and 𝑒  represents the height, line, eigen features, 

respectively; k denote the number of bins in the spatial histogram. 

In the experiments, k is set to 20 to consider both the compact 

encoding and sufficient geometric description.  

 

With the shape encoding in (5), the shape similarity measurement 

is formulated as the distance between the encoded coefficients of 

the pint cloud P and the building model M: 

 

𝑑𝑖𝑠𝑡(𝐏, 𝐌) = |𝐹(𝐏) − 𝐹(𝐌)|                     (6) 

 

2.4 Encoding Properties 

Shape retrieval based on the proposed encoding approach 

introduces several properties that demonstrate the potential for 

building model retrieval by point clouds. First, the proposed 

approach provides a metric in which similar shapes have small 

distances, whereas dissimilar ones have larger distances. Second, 

the proposed approach is capable of consistently encoding point 

clouds and polygon models with the aid of data resampling. To 

demonstrate this property, building models and their 

corresponding point clouds are tested. The encoding results in 

Figure 6 show that the building models and point clouds have 

similar coefficients, which indicates that they are consistently 

encoded.  

 

 

 

  

   

 

   

   
Figure 6. Consistent encoding of point clouds and building 

models. 
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Figure 7. Demonstration of rotation invariance. 

 

Third, the coefficients are inherently rotation invariant. As shown 

in Figure 7, the coefficients remain unchanged when rotations are 

applied to a building model. Fourth, the proposed encoding 

scheme is potentially insensitive to noise. It is because that 

features used in encoding are based on spatial statistics, that is, 

eigen-feature and spatial distribution. For example, in Figure 8, a 

point cloud with Gaussian noise magnitudes (the standard 

deviation is set to 0.1) is tested. Results show that the encoded 

coefficients exhibit only slight differences when noise is present 

in the data. Fifth, the proposed encoding facilitates the reduction 

of dimensionality in shape description since a small set of 

encoding feature is used. With the aforementioned properties, the 

proposed retrieval method can efficiently and accurately retrieve 

polygon models by point clouds. 

 

 

 

  

   

 

   

   
Figure 8. Demonstration of noise insensitivity. 

 

3. EXPERIMENTAL RESULTS 

A database including about 900,000 3D models collected from 

the Internet is used for evaluation of data retrieval. The related 

methods for comparison is an online system using model-based 

retrieval (Chen et al., 2014). The results of building model 

retrieval using a point cloud acquired by airborne LiDAR is 

shown in Figure 9 to Figure 16. The first rankings of the extracted 

models in each results of the proposed method are closest to input 

queue which indicates that the accuracy of geometric encoding 

and the successfulness of consistent encoding. 

 

Input query 

 

Ranking: 1 

 

Ranking: 2 

  

Ranking: 3 

 

Ranking: 4 

 

Ranking: 5 

 
Figure 9. Retrieval results of the compared method. 

 

Input query 

 

Ranking: 1 

 

Ranking: 2  

 
Ranking: 3 

 

Ranking: 4 

 

Ranking: 5 

 
Figure 10. Retrieval results of the proposed method. 
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Figure 11. Retrieval results of the compared method. 
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Figure 12. Retrieval results of the proposed method. 
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Figure 13. Retrieval results of the compared method. 
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Figure 14. Retrieval results of the proposed method. 
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Figure 15. Retrieval results of the compared method. 
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Figure 16. Retrieval results of the proposed method. 

 

4. CONCLUSIONS 

A building model retrieval method using a point cloud as query 

input was presented. With the proposed encoding approach, the 

building models in the database and the input point clouds can be 

consistently and accurately encoded. The proposed encoding 

approach based on geometrically spatial histogram introduces the 

properties of rotation invariance and noise insensitivity. The 

experimental results of airborne LiDAR data demonstrate the 

efficiency and accuracy of the proposed approach, and the 

qualitative and quantitative analyses show the clear superiority of 

the proposed method over the related methods.  
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