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ABSTRACT: 

 

This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and 

aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to 

provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree 

from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of 

boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on 

the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree 

was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and 

attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. 

For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem. 

 

 

1. INTRODUCTION 

With emerging new techniques in both imagery and image 

processing, there is an opportunity for generating a 

comprehensive and precise 3D model from objects and surfaces. 

This opportunity has been overwhelmingly appreciated by a 

wide range of users, but it couldn’t satisfy all requests for an 

ultimate 3D model. 3D modelling is reaching its mainstream 

popularity in these days; however, users are seeking for a 3D 

model that is able to precisely show all details from the objects. 

An ultimate 3D model comprises the following characteristics 

such as more realistic, exposing boundary clearly, flexibility, 

and precision. Photogrammetry is a technique for acquiring 3D 

data from objects for years. The techniques of image acquiring 

in photogrammetry are classified in two major groups of active 

and passive imageries. Since last decade, laser scanners are 

effectively using for acquiring 3D data from objects, surfaces, 

and terrains; consequently, these data are being used for 

reconstructing accurate Digital Elevation Models (DEM), or 

Digital Surface Models (DSM), or Digital Terrain Models 

(DTM). Usually, most studies in laser scanners data are 

focusing on deriving DSM or DEM from point cloud for 

analysing the topographic characters of the terrain and the 

surface (Lee and Younan 2003, Brzank et al. 2008). Laser 

scanners data have had great benefits for users that include 

rapid and simple process, providing precise details from indoor 

and outdoor objects, plus revolutionary cost effective. As a 

result, laser scanners have been utilised for multiple purposes 

and application. For example in forestry, laser scanners have 

had applications for ecological assessment, forest operation 

management, and geomorphology (Pirotti et al. 2008) and one 

of the applications in forestry is detecting and extracting trees. 

The segmentation of trees from point clouds data has been 

explained in various literatures (Lin and Hyyppa 2016, Casas et 

al. 2016, Homainejad 2013, Homainejad 2012, Secora 2007, Li 

et al. 2012, and Lindberg et al. 2013). Basically, the 

segmentation of a single tree between groups of trees is a 

tedious and almost impossible job, but it is very important in 

forestry, urban planning, and agriculture. The purposes of single 

tree delineation have been explained in abundant literatures 

(Wolf and Helpke 2007, Krahwinkler and Rossmann 2013, and 

Engler et al. 2013). For example, study in ecosystem and 

wildlife or precise measurements of biomass in forest are two 

main reasons for detecting and delineating of single trees (Lr 

Roux et al. 2015, Jakubowski et al. 2013). Usually, trees come 

with different shapes and sizes that it might disturb the process 

of the segmentation and delineation. Therefore, some studies 

(Jakubowski et al. 2013, Malthus and Younger 2000, and 

Brandtberg 2007) have been focused on segmentation of a 

particular type of tree, or some studies focused on cluster tree 

classification from airborne images using unsupervised 

classification approach (Schäfer et al. 2016), or some studies 

focused on single tree extraction from ALS data using Canopy 

Height Model (CHM) or normalised CHM (Zhamg et al. 2014, 

and Mongus and Zalik 2015). 

This paper discusses a new approach for delineation and 

extraction of individual trees from point cloud data and aerial 

image for reconstruction a 3D model. The approach has been 

successfully tested and implemented on a number of data. The 

final output is a 3D model from the trees that it includes 

coordinates and specie’s attributes, which can be used in 

various studies. 

This paper is organised into six sections. An overview on laser 

scanner data is given in the next section. Section 3 discusses the 

proposal. The study area is given in the section 4. Section 5 

discusses the experiments and results followed with the 

conclusion. 

 

2. A BRIEF OVERVIEW ON AIRBORNE LASER 

SCANNERS 

The technical information relating to airborne laser scanners has 

been widely covered in abundant literatures such as (Wehr and 

Lohr 1999, Kirchhof 2008, and Petrie 2011), and there is no 

requirement to go in details here. Since the segmentation of the 

single tree from point cloud data is the key research in this 

project, the Airborne Laser Scanners (ALS) technology and its 

behaviour in vegetation canopy are briefly reviewed. An ALS 

consists of two parts of the hardware and the software. The 

hardware is a laser rangefinder that fires laser pulses in short or 

long wavelengths. The wavelengths which are employed in 

ALSs vary in size and type such as Near Infra-Red (NIR) which 

has been employed in early versions of ALSs, Short 

Wavelength Infra-Red (SWIR), and blue-green part of 
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spectrum. A GPS and an IMU are always on board for 

continuously positioning the ALS unit during scanning 

operation. Plus GPS and IMU, a precise clock is using on board 

for measuring the precise time for calculation the distance 

between the laser scanner and the object as illustrated in 

equation 1. The footprints of the laser scanners are varying from 

0.2 meter to 2.0 meter and the receiver’s field-of-view is 

varying from 0.2 meter to 5.0 meter. Finally, the returned echo 

from object accompany with all other acquired data (pulse 

travelling time, GPS and IMU data) are digitised and transferred 

to an on board computer for post processing.  

dist = (t(two ways)/2)*c    (1) 

Where: dist is the distance between the laser scanner and object, 

t is the travelling time, and c is the speed of light. 

The earlier version of ALSs transmitted pulses within a defined 

time intervals. Their technology was designed based on lapse of 

time between firing pulses and receiving the echo. The elapsed 

time was calculated based on the flight altitude and accuracy of 

mapping. In the new version of ALSs, the elapsed time has been 

eliminated by supplying new technology of recording multiple 

pulses simultaneously; consequently, the new ALSs continually 

is transmitting pulses and recording their returned echoes. The 

new technique of ALS varies in employing wavelengths, for 

example Leica Geosystems has used the technique of “Multiple-

Pulses-in-the-air” (MPiA), or the technique of “Continuous 

Multi-Pulse” (CMP) is being used by Optech, or RIEGL is 

using “Multiple Time Around” (MTA) technique. The new 

versions of the laser scanners are able to receive multiple 

scattered echoes from a single pulse that is suitable for detecting 

and segmenting trees from point cloud data. Indeed, each pulse 

has more than one returned pulse from a tree. When a pulse hits 

a tree, it is scattered and a portion of pulse returns to the ALS 

and one part is penetrating and continuing its path. This process 

is continuing until the signal hits the ground and returns to the 

ALS. The new ALSs are able to record four returned scattered 

pulses of a single pulse; therefore, the new ALSs are able to 

give more details about the trees that can be used in better 

segmentation. The density of point cloud in a 1 m2 is pretty 

much related to flight height and the number of the pulses. 

Usually the density of 4 points per 1 m2 is estimated for a flat 

land while the flight altitude is 1000 meters above the ground. 

This density can be exceeded up to 10 points (Jung et al. 2011) 

to 25 points (Mund et al. 2015) per 1 m2 for a dense vegetation 

area. 

The accuracy of point cloud very much related to accuracy of 

measuring range, scan angle and positioning. The accuracy of 

range is decreasing with increasing the flying height. This 

accuracy is 5cm when flying height is equal to 500 meters, and 

is 10cm when flying height is 1000s meter and so on (Petrie 

2011). The accuracy of positioning much related to the accuracy 

of GPS/IMU devices that is varying from 0.05 meter to 0.3 

meter.  

3. PROPOSAL 

The idea consists of the following steps. In the first step a group 

of trees from point cloud data are detected and extracted. In this 

step, an ad hoc search for trees is carried out, and then a 

segmentation approach is implemented for discriminating single 

trees from the group of trees. The equation 2 shows the 

mathematical model of the segmentation approach as it models 

the relationship between the height of the peak points and the 

depression point of two adjoined trees. The equation 2 has been 

basically developed based on trial and error and Figure 1 

visualises the concept of the equation 2.  

 
   (2) 
     Where, d is the distance between two trees, d1 is the distance 

between the taller trees to the depression point, h1 and h2 are 

the heights of the two trees, and e is a factor related to type of 

tree and it was assumed zero for this project because the type of 

tree was unknown. 

 

 
 

Figure 1. Two adjoined trees and a derived profile that are 

visualising the concept of the equation 2. 

The equation 2 calculates the depression point between two 

adjusted trees. The aim in this project is to detect the recorded 

depression point by ALS that is slightly different with the 

calculated one. The process of detection the recorded 

depression point consists the following steps: 1) calculate the 

location of depression point using the equation 2, 2) a search 

window is defined according to the calculated depression point 

for searching and extracting the depression points within the 

point cloud data, 3) the extracted points are registered onto the 

aerial image for assisting the object detection and extraction 

from the aerial image as the process was explained by 

Homainejad (2012), 4) finally, the extracted trees from the 

aerial image are converted to the point cloud data to be captured 

in a 3D space for creating and reconstructing a 3D model from 

the trees. 

 

4. STUDY AREA 

Part of the city of Vaihingen in Germany has been chosen for 

this project (Figure2). The data and technical information from 

the area have been provided by ISPRS-Commission III. Also, 

the commission has provided a permit to researchers for using 

the technical data in their studies. The acquired aerial images 

and ALS data have been conducted by German Association of 

Photogrammetry and Remote Sensing (DGPF) Cramer (2010). 

The test area is a residential area includes multistorey buildings, 

and road infrastructure, and vegetable canopy. Two groups of 

aerial images and Laser Scanner Data were included with the 

source data. The aerial images were acquired by Intergraph Z/I 

DMC with 8 cm ground resolution and 11 bits radiometric 

resolution at 24 July and 6 August 2008. The images were 

stored in 16 bits RGB TIFF formats and their technical 

information includes the parameters of orientations can be 

achieved in ISPRS web site. 

 

The ALS data has been acquired on 21 August 2008 using a 

Leica ALS50 system with 45o field of view and mean flying 

height 500 m above ground. The average overlap strip is 30% 

with the median point density of 6.7 per meter and the mean 

point density for each strip is 4 point per meter. 
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Figure 2. The area studies were highlighted on the aerial image. 

 

5. EXPERIMENTS AND RESULTS 

5.1 Field Experiments 

Initially a field experiment has been conducted in a divers and 

dens area (Figure 3) for testing and verifying the equation 2. 

The heights and distances of adjoined trees using surveying 

method were acquired and then the acquired data were inserted 

in the equation 2 for obtaining the boundaries between the 

crowns of two neighbouring trees. The obtained boundary was 

compared with the acquired data from the field work and the 

result has been presented in Table 1. The result indicated that 

the equation 2 can be trustfully used for defining the boundaries 

between crowns of two neighbouring trees. 

 

5.2 Detection and Extraction Trees from ALS Data 

In this step all trees on the selected area (Figure 2) were 

detected and extracted from point cloud data and captured in a 

3D space for generating and reconstructing an initial 3D model 

from trees and later the 3D model was used for creating the final 

3D model that include other attributes and integrated colour and 

texture. 

In order to detect and extract trees from point cloud data, an 

algorithm according to an approach that was explained by 

Homainejad (2012), was developed and implemented on the 

ALS data. The algorithm is assessing the points’ density, 

heights, and the intensity value within a search window against 

defined criteria. The size of the search window was equal to the 

size of the ALS footprint which was 0.39 m on diameter. The 

criterion was four points per 1 m2 in all area and 6.7 points per 

1 m2 for vegetation area. The criterion for points’ height inside 

the search window is illustrated in the following non-equations: 

GE<ei and |e-ei|>T, where GE is the ground level height, e is the 

height of a reference point in the search window, ei is height of 

point “i” in the search window, and T is a defined threshold. 

Then an algorithm was implemented to carry out the equation 2 

within the search window in order to define the depression 

point and the boundary line between the adjoined trees. For 

assessing the result a TIN algorithm followed with contour lines 

was carried out on the output. The contour lines can provide the 

location of depression point and peak points, and a profile 

between the points in order to assess the obtained depression 

points from Equation 2 and the points on the depression line. A 

number of trials were carried out and their results were 

evaluated and analysed. Their results were illustrated in Figure 

4. Figure 4 is illustrating the profile of trees that include two 

depression points; one has been obtained using the equation 2 

and another is extracted from point cloud data. The 

investigation shows that the margin of two depression points, is 

in the range of “0.05*d1” along line of p1p2 and “0.2*d1” along 

depression line. Therefore, it can be concluded that the equation 

2 did successfully define the location of the depression points 

on the ALS data with maximum 5% margin alongside of  p1p2 

line. In the study area some trees have multiple trunks as 

illustrated in Figure 5; therefore, the tree has multiple peaks 

point that its profile is demonstrating in Figure 6. In this 

situation, each small part was detected and extracted as a single 

tree and later they combined and captured as a single tree. 

 
HEIGHT DBH DISTANCE d1 e 

TREE1 30.5 0.906 
13.157 8.026 -d1*5% 

TREE2 19.5 0.736 

TREE1 26.5 0.999 
6.506 3.748 +d1*45% 

TREE2 19.5 0.736 

TREE1 5.631 0.25 
2.09 1.09 d1*0.06% 

TREE2 5.13 0.25 

Table 1: The result from field experiment. 

 
Figure 3: The selected area for field experiment. 

 
Figure 4. Four profiles of adjoined trees. The red area is the gap 

between the calculated depression point and the extracted. 
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Figure 5. A multi trunk trees. 

 

 
Figure 6. A topographic view from the multi trunk trees. The 

contour lines clearly show multiple peak point. 

 

The detected and extracted single trees from ALS data are 

captured individually in a 3D space in order to creating an 

initial 3D model. One of the advantages of this method is to edit 

and update each tree separately without affecting other trees as 

well as to have a DSM from trees. Later, more details relating to 

each tree can be integrated in the 3D model for further 

analysing. The 3D model obtained in this step is only created 

from point cloud. Later, these data are used for assisting in 

detection and extraction trees from aerial digital image and 

creating final 3D model. 

 

5.3 Detection and Extraction Trees from Aerial Images 

In this step, each extracted tree from ALS data are transformed 

and registered onto the aerial image for assisting the process of 

detection and extraction of trees from aerial image. 

Homainejad’s approach (2012) has been employed for 

transforming and registering points from ALS data to the image. 

Prior to process of transformation and registration, an 

orientation has been carried out to orient the ALS data with the 

aerial image. The initial question was in what accuracy the peak 

point from the point cloud has to be matched with its 

correspondence point on the aerial image. Technically, the peak 

point from point cloud does not match with its correspondence 

point in the aerial image because: a) the peak point from the 

point clouds is fairly related to range and scattered waves 

returned from one of the points on the top of the tree not from 

the highest point of the tree, and b) the tree is not a stationary 

object and the highest point is changing constantly due to either 

natural or human reasons. Basically it doesn’t mean the first 

scattered wave is coming from the highest point of the tree but 

it is coming from a top point on the tree. C) Always there is a 

lapsing time between the time of imagery and the time of ALS 

data acquisition, and sometimes this lapsing time is more than 

few months and trees would be changed physically within this 

period. Therefore, always there is a miss match between the 

point cloud data and the aerial image and basically we cannot 

improve this error, even with the applying a good orientation.  

The provided parameters of orientation by ISPRS have been 

utilised for orientation between the ALS data and the aerial 

image. Unfortunately, there was a mismatch, and the quantity of 

the mismatch in some parts was very significant as much as 500 

pixels in each X and Y direction on the image as illustrated in 

Figure 6 and Table 2. Consequently, it was required to obtain 

new parameters of orientation for the area of study. The result 

after applying new parameters, illustrates accuracy in range of 

few pixels which it satisfies the aspects of this project, and 

consequently the extracted points were successfully registered 

onto the image for distinguishing the boundaries between trees 

and assisting in detection and extraction trees from the image. 

Figures 7, 8, and 9 depict the output from registering point 

cloud data on the image that each tree was defined and their 

boundaries have been distinguished. As Figure 8 shows, the 

boundaries were defined very well despite overlapping in some 

parts and Figure 9 shows the boundaries on a multi trunk tree. 

Each part of a multi trunk tree can be separately extracted and 

later can be captured as a single tree. The overlapped area is less 

than 5%.  
  

COLLINEAR METHOD DLT METHOD 

IMAGE ∆x (PIXEL) ∆y (PIXEL) ∆x (PIXEL) ∆y (PIXEL) 

10040082 -0.5 -107.5 0.5 -107 

10040083 0.5 -18.5 1.5 -10.5 

10040084 4.5 39 5 37.5 

10050104 -21.5 -265.5 -20.5 -269.5 

10050105 21.5 -297.5 21.5 -298.5 

10050106 -109 -206 -107.5 -206 

Table 2: Mismatch values in X and Y directions for digital 

images that have been obtained using two methods of DLT and 

Collinearity Equations only for area 1. The calculation has been 

carried out on based of an assumption that the point clouds data 

has no errors. 

 
Figure 7: The miss match after registration of extracted trees 

from point cloud data onto the aerial image.  
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Figure 8: The output from registration of the point cloud data 

on the image after applying the corrections. 

 
Figure 9: The extracted boundary of single trees. 

 
Figure 10: The extracted boundary from a multi trunks tree. 

 

5.4 Final 3D Model 

In this stage, the extracted trees from aerial image were 

converted from raster to vector and new point cloud was 

created. The image was transformed from pixel to point cloud 

by the method that was explained by Homainejad (2012), and 

then the new point cloud was captured in a 3D space to create 

the final 3D model. In the process of transformation, a set of 

coordinates (X, Y, Z) were bonded to the pixels. Each pixel 

matches only with a point in the initial 3D model, and then it 

took the coordinates of that point. The points include the 

intensity values that inherited from the image. In the next step, 

each tree was individually captured in a 3D space as illustrated 

in Figure 11. Each tree was captured in an individual layout. 

The result is a new 3D model that can be used for different 

studies. Each single tree is impartial from other trees and has a 

unique identification; therefore, each tree can be updated and 

edited without effects on the other trees. Also, each tree can be 

assigned a number of attributes such as type and age tree. 

 

 
Figure 11: The final 3D model that has been created from 

extracted trees from aerial images. 

 

6. CONCLUSION 

The main aspect of this project was to develop an approach that 

is able to detect and extract a single tree from ALS data and 

aerial image, and then create a 3D model from them. 

Homainejad’s approach for detection and extraction of trees 

from ALS data and the aerial images, and also for creation a 3D 

model was utilised. Since Homainejad’s approach has provided 

bulk segmentation from trees, a modification has been carried 

out in order to segment and extract single trees from ALS data 

and aerial images. The modification is reflected in the following 

steps. 

 After the bulk segmentation from ALS data, A TIN 

and contour lines were carried out on the output. The 

contour lines can show the peak points and slope that 

they were used for defining the boundary lines and for 

segmentation and extraction of single trees. 

 Then depression points were calculated using 

Equation 2. The depression points defined the 

boundary lines between trees. 

 A search was carried out to detect the points 

alongside the depression line. 

 Then each single tree was extracted and captured in a 

3D space. 

After extracting trees from ALS data, the data was transformed 

and registered onto the aerial image for assisting the process of 

segmentation and extraction of its corresponding tree from the 

aerial image. Finally, the extracted trees from aerial image is 

transformed and registered onto the 3D space for creating a new 

3D model. Each individual tree in the final 3D model can be 

independently updated, modified, and removed without 

affecting other trees and 3D model. Each tree has had a unique 

identification and attributes that includes the X, Y, Z 

coordinates plus the tree’s details such as type of tree, and age. 

Furthermore, each tree inherited intensity values from aerial 

image that can help to recognise the type of the tree. Since the 

3D model is updateable, the 3D model can provide the latest 

details and information regarding to trees and environment. 
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Therefore, the result from this approach has a great impact on 

other studies in environmental conservation and urban planning. 

For example, in forestry, the 3D model can be used for study in 

biomass and diversity, or in urban planning the 3D model can 

be used on the effects of pollution on trees. 
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