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ABSTRACT: 

Methodology of automated human settlement mapping is highly needed for utilization of historical satellite data archives for urgent 

issues of urban growth in global scale, such as disaster risk management, public health, food security, and urban management. As 

development of global data with spatial resolution of 10-100 m was achieved by some initiatives using ASTER, Landsat, and 

TerraSAR-X, next goal has targeted to development of time-series data which can contribute to studies urban development with 

background context of socioeconomy, disaster risk management, public health, transport and other development issues. We developed 

an automated algorithm to detect human settlement by classification of built-up and non-built-up in time-series Landsat images. A 

machine learning algorithm, Local and Global Consistency (LLGC), was applied with improvements for remote sensing data. The 

algorithm enables to use MCD12Q1, a MODIS-based global land cover map with 500-m resolution, as training data so that any manual 

process is not required for preparation of training data. In addition, we designed the method to composite multiple results of LLGC 

into a single output to reduce uncertainty. The LLGC results has a confidence value ranging 0.0 to 1.0 representing probability of built-

up and non-built-up. The median value of the confidence for a certain period around a target time was expected to be a robust output 

of confidence to identify built-up or non-built-up areas against uncertainties in satellite data quality, such as cloud and haze 

contamination. Four scenes of Landsat data for each target years, 1990, 2000, 2005, and 2010, were chosen among the Landsat archive 

data with cloud contamination less than 20%. We developed a system with the algorithms on the Data Integration and Analysis System 

(DIAS) in the University of Tokyo and processed 5200 scenes of Landsat data for cities with more than one million people worldwide. 

 

 

 INTRODUCTION 

Urban expansion is one of the most important issues in 

development problems (Angel et al., 2005; Foley et al., 2005). 

Monitoring urban formation is needed for urban management 

which is connected to other issues, such as disaster risk 

management (Doocy et al., 2007; Dasgupta et al., 2009), public 

health (Brooker et al., 2006; Omumbo et al., 2005), transportation 

networks (Schneider et al., 2003), and food security (Balk et al., 

2005). Because geographic data of urban development is rarely 

affordable to less and least income countries, innovative methods 

to develop such data are urgently needed. 

Satellite-based human settlement mapping has contributed to 

better urban monitoring and planning (Schneider et al., 2003; 

Schneider and Woodcock, 2008). Automation of the mapping is 

important to achieve finer human settlement maps, which are 

especially needed in developing countries. As development of 

global data with spatial resolution of 10-100 m was achieved by 

some initiatives using ASTER (Miyazaki et al., 2014), Landsat 

(European Commision Joint Research Centre, 2014), and 

TerraSAR-X (Esch et al., 2013), development of time-series data 

would be suggested to be the next goal because such data can 

contribute to studies on urban growth processes (Taubenböck et 

al., 2014) which could be closely connected with socioeconomy, 

disaster risk management, public health, transport and other 

development issues. In this paper, we present development of a 

system for human settlement mapping using Landsat archive with 
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an automated algorithm. The preliminary results on the 

developed system is also presented. 

 METHODOLOGY 

Development of human settlement maps was initiated by use of 

coarse-resolution satellite data, such as DMSP-OLS and MODIS 

(Center for International Earth Science Information Network et 

al., 2004; Schneider et al., 2010). The developed map data 

contributed to socio-economic analysis of urban development 

with the consistency of the data worldwide (Montgomery, 2008). 

In addition, needs for more spatially detail data were emerged for 

applying the data to analysis on urban forming, such as sprawl 

and compactness of cities (Angel et al., 2005; Schneider and 

Woodcock, 2008). For such analysis, Landsat and ASTER are 

good data resources to represent forms and networks of human 

settlement including buildings, paved areas, and other man-made 

structures (Small, 2005; Esch et al., 2014). To use such higher-

resolution satellite data for human settlement mapping in 

traditional methods, development of training data, the most 

labour-intensive process in remote sensing projects, is required 

for accurate classification; however, such process is not feasible 

to extend the data development in global scale. Some research 

initiatives developed automated algorithms using machine 

learning algorithm to use existing coarse-resolution human 

settlement maps as training data (Miyazaki et al., 2014; Duan et 

al., 2015; European Commision Joint Research Centre, 2014).  
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We applied this approach which enabled image classifications of 

large amount of satellite data without any human labour resource. 

While classification algorithms were successfully automated, 

there have been still problems in accuracy caused by 

uncertainties of satellite data quality, such as cloud 

contaminations, which are considerable constraints for global 

applications of Landsat data (Ju and Roy, 2008). For 

development of time-series dataset, requirements of observation 

date are additional constraints in availability of good quality data. 

To reduce impact of the uncertainties in data quality, we 

proposed to combine datasets of multiple dates into a single target 

date. For example, to develop a data for 2005, supplement data 

for August 2004 and September 2006 were used in addition to 

the data for 2005. 

In the following, we describe details of the method using coarse-

resolution land cover maps as training dataset and combining 

supplement data into a single data.  

2.1 Learning with Local and Global Consistency 

For the classification of built-up and non-built-up area pixels, we 

applied a machine learning algorithm known as Learning with 

Local and Global Consistency (Zhou et al., 2003), which 

demonstrated an application to human settlement mapping using 

ASTER satellite data with 15-m resolution (Miyazaki et al., 

2013). The LLGC enabled to use existing coarse-resolution 

human settlement maps as training data for classification of 

pixels in ASTER data to built-up or non-built-up areas through 

iterative graph-based clustering. 

Another advantage of the LLGC is notable computation 

efficiency. Although the algorithm is iterative in concept, its 

calculation is solved by a few matrix operations (Zhou et al., 

2003). This advantage is important to develop global human 

settlement maps using large amount of satellite data. It should be 

noted that LLGC yields not only classifications results (built-up 

or non-built-up), also confidence of the classifications ranging 

0.0 to 1.0, which can be interpreted as probability of existence of 

built-up area in the pixel. 

Because the confidence values were likely to depend on 

proportions of initial classifications (built-up and non-built-up 

for this case), we masked extent of data processing by buffer 

areas of initial extents so that equal number of pixels within built-

up and non-built-up areas were processed for LLGC. 

2.2 Composition of the LLGC results 

To reduce impact of the uncertainty, the confidence values were 

composed by taking median values by pixel among several 

LLGC results of Landsat data for a certain range of observation 

dates into a single output. For example, the results for August 

2004, July 2005, October 2005, and September 2006 were used 

for the human settlement mapping for 2005. 

The Landsat scenes were automatically assigned by a score that 

calculated from percent of cloud cover (less cloud cover is 

preferable) and the length of dates between the target date and 

observation date (observation date closer to the target is 

preferable). 

 IMPLEMENTATION OF THE SYSTEM 

We implemented the algorithms on a high-performance 

computing system in the University of Tokyo, called Data 

Integration and Analysis System (DIAS). The DIAS provided 

parallel computing with a few tens of processors. For better 

flexibility and configurability, we implemented the algorithms 

and constructed the programs using open-source software only. 

As the DIAS was Linux-based system, which is originated by 

open-source development, construction of the system was open-

source-friendly so that the system could be portable to other 

Linux-based computing systems. Table 1 lists the open-source 

software used for the system. 

Software Functions Functions for the system Website 

GRASS Geospatial data analysis suite General operations of raster data https://grass.osgeo.org/ 

PostgreSQL Relational database management 

system 

Analysis of Landsat metadata for 

choosing scenes 

http://www.postgresql.org/ 

PostGIS Geospatial data extension of 

PostgreSQL 

http://postgis.net/ 

SQLite File-based database management 

system 

General operations of vector data http://www.sqlite.org/ 

SpatiaLite Geospatial data extension of 

SQLite 

http://www.gaia-gis.it/gaia-

sins/ 

GDAL Library for geospatial data 

abstraction 

Conversion of data formats and 

projections 

http://gdal.org/ 

GNU Octave Mathematic operations Implementation of LLGC https://gnu.org/software/octave/ 

R Statistical analysis software Composition of LLGC results https://www.r-project.org 

LEDAPS Production of surface reflectance 

data from Landsat data. 

Acquiring surface reflectance 

data from Landsat archive data 

https://github.com/usgs-

eros/espa-surface-reflectance 

Table 1. List of software used for the human settlement mapping system 
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 EXPERIMENT RESULTS AND DISCUSSIONS 

We conducted an experiment of the proposed method to Landsat 

scenes covering cities with population more than one million for 

1990, 2000, 2005, and 2010. The Landsat data were retrieved 

from the Landsat data archive of the US Geological Survey (U.S. 

Geological Survey, 2015). We used the built-up layer extracted 

from MCD12Q1 (Land Processes Distributed Active Archive 

Center, 2014), a MODIS-based global land cover map, for 

training data of built-up areas. The algorithm was applied to 5200 

scenes of Landsat data for 1990, 2000, 2005, and 2010. Some 

examples of the results are presented in Figure 2. The results well 

represented urban expansion of the cities in the last decades. 

However, some results for 1990 looked occupying major areas of 

human settlement extent although the urban development in the 

cities rapidly progressed later than 2000. It might be due to 

overestimation of built-up areas for 1990 where the results for 

2000, 2005, and 2010 classified as non-built-up. This sort of 

inconsistency could be corrected by comparison of the results 

among the target years, such as majority decision or Bayesian 

inference. For example, if a pixel classified as a built-up area for 

1990 and as a non-built-up area for 2000, 2005, and 2010, the 

pixel shall be classified as a non-built-up area also for 1990. 

While such overestimations were observed for some cities, 

results for some other cities had much underestimations. This was 

due to underestimations of built-up areas in MCD12Q1 for such 

cities because the algorithm depended on the initial extent of 

human settlement (the built-up areas in MCD12Q1 for this case) 

by masking the data to adjust pixels for built-up and non-built-up 

areas in equal numbers.  

We added supplemental data of initial built-up areas, which were 

prepared by visual interpretation of Landsat false colour 

composite for respective target years (Figure 1). The result was 

improved by addition of the supplemental data regardless that the 

visual interpretation was conducted very roughly in a coarse scale 

for Landsat’s spatial resolution. The results indicated the system 

should have a function of collecting visually interpreted data 

which supplements omitted built-up areas in the MCD12Q1. 

For further improvements of the method, we will conduct 

accuracy assessment in statistical manners, such as use of error 

matrix (Foody, 2002). Also, we will publish the result data for 

end user’s applications once the accuracy reaches a product 

quality. 
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