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ABSTRACT:

Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain
measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from
emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality
monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These
stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means.
The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series
of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based
on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal
variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered
accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 ug m~2 and 1.8 ug m—3
respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting

missing values, outlier detection and for mapping to support health impact studies.

1. INTRODUCTION

Epidemiological studies of the health effects of air pollution re-
quire estimation of individual exposure. Such studies typically
aim to identify the outdoor air pollution concentration at subjects
residence, school or place of work. This is then used to quan-
tify exposure. Identifying the air pollution concentration at rele-
vant locations, for given points or periods in time, is challenging
because it is not possible to obtain measurements at all relevant
locations. It is therefore necessary to predict at these space-time
locations, either on the basis of dispersion from emission sources
or by interpolating observations. This study uses data obtained
from a low-cost sensor network of 32 air quality monitoring sta-
tions in the Dutch city of Eindhoven, which make up the ILM (in-
novatief luchtmeetsysteem/innovative air (quality) measurement
system) (Hamm et al., 2016). These stations currently provide
PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in
diameter), aggregated to hourly means. The data provide an un-
precedented level of spatial and temporal detail for a city of this
size.

Analysis of space-time data has received a lot of attention in re-
cent years. The ILM data can be considered discrete in time
(they refer to specific one-hour periods) but continuous in space.
The approach taken in this paper follows Gelfand et al. (2005)
and Finley et al. (2012) and treats the data as arising from time
series of spatial processes, where a dynamic model describes the
temporal evolution of the data. This is described further in Sec-
tion 3.

Various data quality challenges arise when analysing these data.
First, for each sensor there may be missing observations ranging
from isolated values to a series of several weeks (e.g., if an instru-
ment is removed for maintenance). Second, the data are typically
noisy by comparison to conventional observations and this may
lead to unreliable observations. It is necessary to identify these

unreliable observation and remove them or correct them. Third,
it is necessary to identify the requirements for the epidemiologi-
cal study in terms of the spatial and temporal resolution and the
precision of the interpolated values. This study addressed the first
two problems.

2. STUDY AREA AND DATA

The study site is Eindhoven, a city in the south of the Netherlands
(municipal population 220,000, municipal area 90 km?). Eind-
hoven is home to the AiREAS initative, which is a cooperative
venture that unites industry, local government, universities, small
business and civic organizations towards the goal of a healthy
and sustainable city (Close, 2016). As part of this initiative an in-
novative outdoor low-cost was installed in 2012, comprised of 32
Airboxes (Figure 1). Each Airbox contains a control and telecom-
munication unit as well as low-cost sensors that measure the con-
centration of different air pollutants. In this paper, the focus is
on particulate matter (PM), particularly PM10 (PM < 10um in
diameter), which is measured at every Airbox using an optical
system. The locations of the sensors were chosen to reflect (i)
sources of pollution (e.g., roads, junctions) (ii) places where peo-
ple live and spend their time (iii) background locations. All sen-
sors were calibrated against a beta attenuation monitoring (BAM)
instrument prior to installation in autumn/winter 2013 (Hamm et
al., 2016). The BAM instrument is part of the official Dutch air
quality monitoring network, maintained by RIVM (National In-
stitute for Public Health and the Environment). Background in-
formation to the ILM is given by Hamm et al. (2016). The data
used for this study were hourly data for a 2-week period from 1-
14 October 2014 where a complete set of hourly data for PM1,
PM2.5 and PM10 were available. This led to 336 observations
(24 hours x 14 days) at 32 locations.

In addition to the air quality data, hourly meteorological data
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Figure 1. Location of airboxes in Eindhoven

were available for a single station in Eindhoven, maintained by
the Royal Netherlands Meteorological Institute (KNMI).

3. METHODS

Consider that y:(s) is the observation (e.g., PM10) at location, s,
and time, ¢. The model is built up firstly through a measurement
equation:

ye(s) = x4(s) B, + us(s) + & (1)

where x;(s) is a vector of p covariates, which may vary in space,
and (3, is a p x 1 vector of regression coefficients which are con-
stant in space for a given time. The term w;(s) is a space-time
. . . ind . .

varying intercept whilst €; ~ N (0, 77) is the spatially and tem-
porally uncorrelated error. Next transition equations model the
time varying regression coefficients, [3;:

iid

By =Bi_1+my, my ~ N(0,5y) @3
and the space-time varying intercept, u(s):
ut(s) = ue—1(s) + we(s) 3)

where w¢(s) ~ GP(0,C:(-,6¢)) fort = 1,...,ns and GP
refers to a spatial Gaussian Process where Ci (-, 0:)) is the spa-
tial covariance function. For a covariance function with a single
decay parameter, 8; = (o7, $:), where ¢ is the spatial decay
parameter, often referred to as the range. Considering the com-
monly used exponential correlation function, Ct(s1,s2;0¢)) =
oip(s1,se; di) = 0 exp(—¢i||s1 —s2||), where h = ||s1 —s2||
is the Euclidean lag distance between s; and ss.

Implementation followed the approach set out in Finley et al.
(2012). The model parameters were estimated in a Bayesian
framework using Markov Chain Monte Carlo (MCMC) simula-
tion. Non-informative priors were used for all paramters: Normal
distributions for the 3’s, uniform distributes for the ¢’s, inverse
Gamma distributions for the 72’s and o*’s and inverse Wishart
for 3,. The MCMC was implemented using spBayes (Finley
et al., 2007) in the R software (R Core Team, 2016) for a chain
of length 20,000 with the first 15,000 being discarded as burn-in.
Chain trace plots were examined for convergence and inference
was conducted using the remaining 5000 samples.

Three experiments were conducted.

1. 500 measurements were removed at random. This experi-
ment recreates the sitution of isolated missing observations

(~ 5% of all observations) that need to be filled-in in order
to have a complete time series.

2. Three complete days of measurements were removed (day
8 for sensors 9, 12 and 18). This experiment recreates the
situation where sensors are removed for extended periods.

3. The results were queried for outlying observations, which
were then cleaned from the dataset.

4. RESULTS

For this research, space varying covariates were not available.
However, exploratory analysis of the temporal variability in PM10
against the meteorological variables did not reveal any clear cor-
relation. There was also no clear association between the type
of monitoring station (e.g., background, busy street, residential
street) and PM10 concentration. Subsequent analysis proceeded
without covariates in Equation 1, hence p = 1 and ¢y = 1.

4.1 Experiment 1

Figure 2 shows the time-series of the temporally varying mean,
B:. This can be interpreted as the dynamic time signal in the
data. The time specific estimates of the variance parameters (17,
o2 and ¢) are shown in Figure 3. There was clear evidence of
spatial structure at most points in time, with a typical median
value of o7 /(77 + of) = 0.6. Large values of 77 or low val-
ues of ¢ were typically associated with outliers (see Section 4.3).
The temporal component was larger than the spatial component
with ¥,) = 6.13(5.24, 7.19) (values in parentheses give the 95%
credible interval) and o2 as illustrated in Figure 3.

Figure 2. Variation in 3; over time (median (red dot) and 95%
credible interval).

An example time-series plot of the predicted values is shown in
Figure 4 for Airbox 16. Note that 3; is the same at all loca-
tions (see Equation 2, whereas u.(s) differs between locations
(see Equation 3) and the predicted value is the sum of these two
components. The isolated missing values were not observable on
the prediction plots; however, the measured values were consis-
tent with the 95% credible interval and the RMSE was 1.4 ug
m~3 across the 500 missing values.

4.2 Experiment 2

Figure 5 shows prediction at Airboxes 9. For Airbox 9 the mea-
surements were removed on Day 8 for the modelling stage. The
median prediction closely matched the observed values (RMSE=1.8
pg m~>) although the credible interval was clearly wider than at
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Figure 3. Variation in o7 (top), 77 (middle), and 3/¢ (effective
range) (bottom) over time (median and 95% credible interval).
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Figure 4. Predictions of PM10 at Airbox 16. Included are the
95% prediction interval (grey region), median /3; (red dots), me-
dian wu¢(s9) (green dots), median prediction (i.e., B¢ + u¢(s9))
(blue dots), observed value (open black circles).

other points in time or for Airbox 16 (Figure 4), where observa-
tions were not removed. This is as expected, since no measure-
ments were available to support prediction.

4.3 Experiment 3

As well as prediciting missing values, this study also yielded re-
sults that are useful for identifying outliers. Figure 4 shows that
there are some isolated observations that lie outside the 95% cred-
ible interval. Following the approach of Zhang et al. (2012) these
may be considered outliers. Further, the very wide credible in-
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Figure 5. Predictions of PM10 at Airbox 9. Vertical lines indicate
Day 8 where the observations were predicted but not included in
the modelling stage. Other details are as in Figure 4.

terval at hour 62 (Figure5) arose because a single extreme value
at Airbox 6 (PM10 = 83 pug m~3) leading to a large estimated
value for 7&,. Removing these values and re-doing the modelling
removes these outliers and very large value of 72,.

5. DISCUSSION AND CONCLUSIONS

The lack of correlation with meteorological variables should not
be taken as a general result. It may simply be that there was no
correlation within this time period. This should be re-evaluated
when implementing the model for other time periods. Future ef-
forts should consider space-varying covariates as well as time-
varying covariates that do not have a spatial component (e.g., via
Equation 2. Space-time varying covariates have recently become
available (Dash, 2016) and will be evaluated in future implemen-
tations. Dash (2016) also used a dispersion model output as a
covariate, an approach which has been successful at coarser res-
olutions (Akita et al., 2014; Hamm et al., 2015).

The proposed model yielded accurate predictions of isolated miss-
ing values (Experiment 1) as well single days of missing values
(Experiment 3). Although further evaluation is required, this ap-
proach shows promise as a method that could be used to fill in
missing values and provide a complete time series to users. A fur-
ther step is to make predictions at unsampled locations, leading
to the production of space-time maps, as proposed by (Gelfand
et al., 2005) and (Finley et al., 2012). When such maps are to
be used in the context of environmental epidemiological studies,
further investigation would be required to identify the required
space-time resolution, as well as the required accuracy.

Finally, outliers were identified in an interactive fashion by com-
paring the observed values to the predictions and the associated
95% credible interval. Isolated outliers were identified and re-
moved from the dataset. These could then be replaced by the pre-
dicted values. Extreme outliers could influence inference (e.g.,
hour 62 at Airbox 6), so it was necessary to re-run the analysis
after removing these outliers. This approach presented in this pa-
per requires further evaluation but shows promise as method for
interactive removal of outliers. A future step would be to use it
for automated outlier detection.

This paper has addressed the initial stages of space-time mod-
elling of particulate matter for a novel low-cost sensor network
that delivers observations at a fine spatial and temporal resolution.
Future work needs to identify the spatial and temporal resolution
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that is achievable for predictive mapping. This is important be-
cause it will influence the health questions that can be addressed.
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