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ABSTRACT: 

 

In this study grey-level co-occurrence matrix (GLCM) textures and a local statistical analysis Getis statistic (Gi), computed from 

IKONOS multispectral (MS) imagery acquired from the Yellow River Delta in China, along with a random forest (RF) classifier, 

were used to discriminate Robina pseudoacacia tree health levels. The different RF classification results of the three forest health 

conditions were created: (1) an overall accuracy (OA) of 79.5% produced using the four MS band reflectances only; (2) an OA of 

97.1% created with the eight GLCM features calculated from IKONOS Band 4 with the optimal window size of 13 × 13 and 

direction 45°; (3) an OA of 94.0% created using the four Gi features calculated from the four IKONOS MS bands with the optimal 

distance value of 5 and Queen’s neighborhood rule; and (4) an OA of 96.9% created with the combined 16 spectral (four), spatial 

(four), and textural (eight) features. The experimental results demonstrate that (a) both textural and spatial information was more 

useful than spectral information in determining the Robina pseudoacacia forest health conditions; and (b) IKONOS NIR band was 

more powerful than visible bands in quantifying varying degree of forest crown dieback. 
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1. INTRODUCTION 

Identifying the location and extent of forest at risk from 

damaging agents and processes assists forest managers in 

prioritizing their planning and operational mitigation activities 

(Haywood and Stone, 2011). Stress in forests displays a variety 

of symptoms, some of which may be detected by remote sensing 

(Wulder et al., 2006).   

 

With recent very high resolution (VHR) satellite imagery, such 

as QuickBird and IKONOS, forest stress and disease can be 

detected at a crown level (Lee and Cho, 2006), which makes 

discrimination of individual healthy and diseased trees possible 

(Coops et al., 2006). However, the classification of VHR 

images suffers from uncertainty of the spectral information. For 

example, in stressed/diseased forest stands, the understory 

plants (e.g., regeneration forest, shrubs, and grasses) presenting 

in gaps and open areas may have a similar NIR response to a 

closed forest canopy. Such a classification challenge may be 

overcome by using grey-level co-occurrence matrix (GLCM) 

(Franklin et al., 2001) or Getis statistic (Gi) (Wulder and Boots, 

2001; Myint et al., 2007; Ghimire et al., 2010). 

  

Random forest (RF) classifier (Breiman, 2001), have been 

developed and produced promising results in mapping forest 

health conditions and extracting forest structure parameters 

(Dye et al., 2012; Grinand et al., 2013; Abdel-Rahman et al., 

2014). Since the textural and local spatial information has the 

potential to improving the accuracy of class designation by 

minimizing intra-class variation (Lévesque and King, 2003; 

Wulder and Boots, 1998), the overall objective of this study is 

to assess whether the GLCM and Gi features extracted from 

IKONOS imagery were effective in determining Robinia 

pseudoacacia forest health conditions in the YRD, China using 

RF classifier. 

 

2. STUDY AREA AND DATASETS  

The Yellow River Delta (YRD) is situated in the estuary of the 

Yellow River in the City of Dongying, Shandong Province of 

Eastern China. In the YRD, the natural vegetation includes 

herbs (Viola philippica, Phragmites australis, Setaria viridis, 

Imperata cylindrica, Aeluropus littoralis, and Phragmites 

australis, etc.) and shrubs (Salix matsudana and Tamarix 

chinesis). There are no natural forests in the YRD. Robinia 

pseudoacacia forests, one of the fast-growing deciduous species 

in the world, have a certain ability to tolerate drought and soil 

salinity; therefore they have been planted widely in this area 

since the 1970s and become the largest artificial forests in 

China (Wang et al., 2015a). However, Robinia pseudoacacia 

forests in the YRD have suffered continuously from dieback 

and mortality since the 1990s. 

 

A scene of IKONOS satellite imagery with four multispectral 

(MS) bands and one panchromatic (Pan) band was acquired for 

the study area on 9 June 2013. Aided by the ALOS imagery 

(obtained on 12 October 2010) and a Global Navigation 

Satellite System (GNSS) unit, a field crew of five people 

collected data on Robinia pseudoacacia health status (including 

healthy, Medium dieback and severe dieback) from 75 plots 
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(represented a 30 m × 30 m area) within homogenous patches 

across the study area during 15–26 May 2013 and 29 May–9 

June 2014. 

 

3. METHODS 

3.1 Image preprocessing 

IKONOS imagery was radiometrically corrected to ground 

surface reflectance by utilizing the empirical line calibration 

(ELC) (Jensen, 2005). In this study, the in situ spectral 

measurements were taken from targets of river (deep / clear 

water) and concrete ground located within image areas during 

May 25–26, 2013 by using an Analytical Spectral Devices 

(ASD) spectrometer. Both IKONOS MS bands and Pan band 

were geometrically rectified into the Universal Transverse 

Mercator coordinate system using 20 ground control points and 

a nearest-neighbor resampling method with a root mean square 

error of less than 0.5 pixels. In addition, since we only focused 

on Robinia pseudoacacia forests, we used the forest boundary 

data obtained from the field survey on May 12–20, 2012 to 

mask out non-forest areas. 

 

3.2 Crown condition classification standard 

Within each of 375 subplots, three average Robinia 

pseudoacacia trees were selected and evaluated according to the 

USFS (United States Forest Service) Crown Condition 

Classification Guide (CCCG) standard (Schomaker et al., 2007). 

These CCCG indicator data were then averaged from the five 

subplots for each plot and each indicator was classified into one 

class from the three vigor classes based on a range of values 

according to Wang et al. (2015b). 

 

3.3 GLCM textures and local spatial statistics 

In this study we focused on three GLCM control variables, 

namely, the window size, the texture measure, and the direction 

based on IKONOS Band 4 (NIR band). The reasons for 

choosing Band 4 to test the effects of the window size and 

direction on classifying forest health conditions include (1) the 

workload was too heavy to test all window sizes and directions 

for all four MS bands; (2) per statistics of training samples of 

Robinia pseudoacacia health conditions extracted from MS 

bands Band 4 was the most effective to discriminate among 

three health levels; and (3) Pu and Cheng (2015) supported that 

TM NIR band was the most important to correlate with LAI 

(note that TM NIR band has the same wavelength as IKONOS 

Band 4). Thus the optimal window size and direction would be 

determined based on IKONOS Band 4, and then the determined 

window size and direction would be applied to all other 

IKONOS MS bands. 

 

Spatial variations of forest health conditions were assessed 

across the study area through the Getis statistic (Gi). From an 

application perspective and in consideration of remote sensed 

imagery, pixels from healthy tree crown will generate clusters 

that differ in intensity from pixel clusters from dieback tree 

crown. In this study, the Gi was used to analyze spatial 

autocorrelation characteristics of forest health conditions. 

Toward this objective, the Gi statistics or features were 

computed with a series of increasing distance value ranging 

from 1 pixel (i.e., window size of 3 × 3 pixels) and with seven 

neighborhood rules (including Rook’s case, Bishop’s case, 

Queen’s case, Horizontal, Vertical, Positive slope, and Negative 

slope) (Getis and Ord, 1992) from four IKONOS MS bands 

respectively using the ENVI software. This procedure was 

repeated with increasing lag sizes until the distance value 

leading to the highest classification accuracy could be identified. 

With this optimal distance value, we compared and selected an 

optimal neighborhood rule that could lead to the highest 

classification accuracy. 

 

3.4 Random forest classification 

Random forests (Breiman, 2001) grow many regression trees 

without statistical pruning, and the result is based on the 

average of all the regression trees. Individual regression trees in 

the forest are built using bootstrap aggregation (bagging), which 

involves randomly drawing, with replacement, a bootstrap 

sample of the original training dataset. Each subset selected 

using bagging to make each individual tree grow usually 

contains 2/3 of the calibration dataset. 

 

In this study we used an independent validation data set to 

assess RF classification accuracy. The ground reference dataset 

was randomly divided into 2/3 (150 polygons) and 1/3 (75 

polygons) for training and validation, respectively. RF 

classification was performed using imageRF (Waske et al., 

2012), which is a license-free platform that can be integrated 

into commercially-available IDL / ENVI software and can also 

be run as add-on EnMAP-Box that is an open-source and 

platform-independent software interface for image processing. 

In this study, confusion matrices were used to assess the 

classification accuracy from independent validation samples. 

Kappa index, overall accuracy (OA), Producer’s accuracy (PA) 

and User’s accuracy (UA) (Congalton and Mead, 1983; Story 

and Congalton, 1986) were used to assess accuracies of 

classifying forest health conditions with different spectral / 

textural / spatial features. 

 

4. RESULTS 

4.1 Determining the Optimal GLCM Window Size and 

Direction 

Figure 1 shows how the classification accuracy changes as the 

window size increases from 3 × 3 to 17 × 17 and the 13 × 13 

window size is an optimal window size to compute the eight 

textural features. Next, with the fixed 13 × 13 window size, we 

further tested the effects of four directions (0°, 45°, 90°, 135°) 

on the RF classification result with the eight GLCM features 

extracted from IKONOS Band 4. According to the OA, a 

direction of 45° has generated slightly better results compared 

to other directions. Finally the optimal determined window size 

of 13 × 13 and direction of 45° were applied to all four MS 

bands to extract GLCM features. 

 

4.2 RF Classification Results  

Table 1 lists the RF classification results based on a set of 

confusion matrices created with independent validation samples 

using spectral bands, textural features, spatial features, and 

spectral/textural/spatial features together. If only using spectral 

bands as input for RF classification, the OA was 79.5% and 

Kappa coefficient was 0.6821 with lower PA and UA for 

dieback forests (especially for medium dieback forest sites). If 

using the eight GLCM features calculated from IKONOS Band 

4 as input, the OA of the forest health conditions classification 

was improved greatly to 97.1% compared to that created with 

the four MS bands only. If using the four Gi features (calculated 

from the four MS bands) as input, the classification accuracy 
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was 94.0%. In order to assess the performance of the combined 

features, the four MS bands, the eight GLCM features, and the 

four Gi features were combined and fed into the RF classifier. 

Table 1 shows that the combined features (16) did not yield a 

higher classification accuracy (96.9%) than the GLCM features 

alone (eight) did (97.1%). 

 

 

Figure 1. RF classification accuracies using the eight GLCM 

textural features across a range of window sizes 

 

Figure 2. Illustration of the effects of the Gi distance thresholds 

(unit: pixel) and neighborhood rules on the RF classification 

accuracies 

4.3 Contribution of All Predictive Variables 

The combined features importance plot in Figure 7 presents the 

relative contributions of the 16 individual features for 

separating the three health conditions of Robinia pseudoacacia 

forests. The plot reveals that the most important predictive 

variable was GLCM texture mean, extracted from Band 4 of 

IKONOS imagery, followed by the Gi features calculated from 

Bands 4, 3, 1 and 2, and then Band 4. According to the 

accuracy values illustrated in Figure 7, the first and second 

ranked features MEA (B4) and Gi (B4) are 5–6 times more 

important than the third ranked feature (Gi (B3)). 

 

5. DISCUSSION 

5.1 GLCM Feature Analysis 

The moving window size of the GLCM is a key parameter in 

texture analysis. There are different methods for determining the 

window size for calculating textures. For example, Franklin et 

al. (Franklin et al., 1996) used a range of experimental 

semivariograms to optimize the texture window size in remote 

sensing of forest inventory and forest structure characteristics. 

In this study, we determined the optimal window size by 

comparing RF classification accuracies. For the eight GLCM 

texture measurements, the 13 × 13 window size was an ideal 

single window choice. Su et al. (2008) found that GLCM 

angular secondary movement at a 45° angle could improve 

buildings classification using QuickBird image because 

buildings in Kuala Lumpur, Malaysia strike northwest and 

southeast, corresponding to the 135° direction. Kayitakire et al. 

(2006) found that the direction parameter had minimal effects 

on retrieving forest structure variables in even-aged common 

spruce stands based on IKONOS-2 imagery. In our study area, 

the direction showed an insignificant impact on GLCM texture 

information. 

 

 Spectral 

features 

(4) 

GLCM 

features 

from Band 

4 (8) 

Gi features 

from 4 MS 

bands (4) 

All 

combined 

features 

(16) 

OA  79.5 97.1 94.0 96.9 

Kappa 0.7123 0.9554 0.9065 0.9416 

 PA  UA PA UA  PA  UA  PA  UA 

Healthy 87.3 88.7 99.5 100.0 97.1 100.0 99.5 100.0 

M 

dieback 

69.9 67.3 98.1 93.2 97.3 85.5 98.4 92.4 

S 

dieback 

77.5 79.2 91.5 97.3 83.8 95.9 90.3 97.7 

Table 1. Confusion matrices and RF classification accuracies 

using four spectral bands (reflectances), eight GLCM textures 

(calculated from Band 4 using the window size of 13 × 13 and 

direction 45°), four Gi features (calculated from the four MS 

bands using distance value of 5 and Queen’s neighborhood 

rule), and four spectral, eight GLCM, and four Gi combined 

features together. A number in parenthesis was the number of 

total features used. OA%: overall accuracy; PA%: Producer’s 

accuracy; UA%: User’s accuracy; M: medium; S: severe. 

Accuracy indices were computed based on independent 

validation samples 
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Figure 3. Combined individual features’ importance plot, 

expressed as mean decrease in accuracy (%) when a feature was 

left out in classification. B1, B2, B3, and B4 represent IKONOS 

blue band, green band, red band, and NIR band, respectively. 

The eight GLCM features were calculated from IKONOS Band 

4 with the window size of 13 × 13 and direction 45°, and 

displacement 1 pixel. The Gi features were calculated from the 

four IKONOS MS bands with the distance value of 5 and 

Queen’s neighborhood rule 
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Figure 4 (b) illustrates the GLCM MEA (B4) with the optimal 

window size of 13 × 13 and direction 45° covering a partial area 

of the study area. In this image, one can clearly distinguish 

many clusters of pixels of varying intensities. The majority of 

the imaging area was characterized by high GLCM Mean value 

(in blue in the image). Along the river channel in the north and 

along the road and drainage ditch from northeast to southwest, 

the values of MEA (B4) were smaller (in brown to yellow in the 

image). 

 

 

Figure 4. Comparison between (a) a subset of false color 

IKONOS composite image (NIR band/red band/green band vs 

R/G/B), (b) GLCM texture MEA (B4) calculated from IKONOS 

NIR band with window size of 13 × 13 and direction 45°, (c) Gi 

(B4) calculated from IKONOS NIR band with distance value of 

5 and the Queen’s neighborhood rule, (d) RF classification 

result created with the four IKONOS MS bands, (e) RF 

classification result created with the eight GLCM features 

calculated from IKONOS NIR band with the window size of 13 

× 13 and direction 45°, and (f) RF classification result created 

with the four Gi features calculated from each IKONOS MS 

band with the distance value of 5 and Queen’s neighborhood 

rule 

5.1 Gi feature analysis 

Ghimire et al. (2010) found that making use of the Gi statistic 

with different distance values led to substantial increase in per 

class classification accuracy of heterogeneous land-cover 

categories. The Kappa values of the RF classifications that used 

a combination of spectral and Gi variables at three different 

distance values (1, 3, and 5 pixels) ranged from 0.85 to 0.92 (vs. 

0.78 using only spectral bands). In this study, we also compared 

classification accuracies at different distance values (from 1 to 8 

pixels) and demonstrated that the distance value of 5 pixels was 

the optimal (Figure 2). On the contrary, Myint et al. (2007) 

reported that the Gi statistics calculated from IKONOS pan-

sharpened MS bands using the shortest distance threshold (i.e., 

1 pixel or 1 m) achieved the highest OA (75%) in urban land-

use and land-cover classification. A small window size (or 

distance value) indicates that a spatial dependency is confined 

to a very localized region while a large distance value indicates 

more spatially extensive spatial dependence (Treits and Hwarth, 

2000). Compared with heterogeneous urban area, forest is 

relatively homogeneous, and thus the local spatial 

autocorrelation covers a larger area. In addition, the optimal 

distance value of 5 pixels (i.e., 11 × 11 window size for 

IKONOS MS bands) for Gi features was close to the optimal 

window size of 13 × 13 for GLCM features. 

 

Figure 3 shows that the first and second important features were 

both computed from IKONOS NIR band (Band 4). This is 

because, compared with other visible band, (1) Band 4 is more 

effective for detecting healthy or diseased trees with reduced 

cell vigor and (2) the NIR band has the greater penetration 

energy through the canopy, and thus the band, reflecting more 

understory and ground surface information, can characterize 

more subtle spatial variation than visible bands. 

 

6. CONCLUSIONS 

In this study we used spectral, spatial and textural information 

extracted from IKONOS multispectral imagery and random 

forest (RF) classifier to determine three health conditions of 

Robinia pseudoacacia forests in the YRD, China. The 

experimental results demonstrated that both spatial and textural 

information outperformed spectral reflectance data. 

Nevertheless, the combination of all the 16 spectral (4) / 

textural (8) / spatial (4) features did not yield better 

classification result than that created with the GLCM features 

(8), which achieved the highest OA of 97.1%. In this study, to 

calculate the best local spatial statistical features, the optimal 

distance value of 5 pixels and the optimal Queen’s 

neighborhood rule were adopted. The best GLCM texture 

measures were calculated with the optimal window size of 13 × 

13 and direction 45°. RF variable importance proved IKONOS 

NIR band was the most effective for textural and spatial 

information extraction, leading to a high separability of Robinia 

pseudoacacia forests health conditions. 

 

Our results also indicated that the RF classifier was a useful and 

robust tool for identification of forest health conditions using 

spectral, textural, and spatial features extracted from VHR 

remote sensing data as input. In addition, texture measures and 

local spatial statistics extracted from VHR imagery (e.g., 

IKONOS imagery in this study) could be used to characterize 

spatial structure of stressed forests and help better understand 

some underlying physical or ecological processes. 
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