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ABSTRACT: 

 

Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support 

frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into 

account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to 

incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce 

dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using 

k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions 

using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and 

allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms 

reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution 

of climate regions and thus, to ensure more uniform population coverage across selected climate categories.  We demonstrate how the 

extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision 

support framework. 

 

 

 

1. INTRODUCTION 

1.1 Climate and health 

Climate, climate change and adaptation are the issues of 

heightening concern in public health research. The effect of 

climate on human health and wellbeing in both developed and 

developing worlds is profound and multifaceted. The climate 

change affects vector borne and water borne diseases, food 

security and mental health (WHO (World Health Organization) 

2009, World Meteorological Organization and World Health 

Organization 2015, Crimmins 2016)  The impact could be direct 

or indirect, immediate or delayed, localized or widespread 

depending on causal, temporal and spatial aspect. For vector 

borne and water borne diseases the effects of climate change can 

be examined by better understanding habitat suitability for causal 

pathogens and their routes of transmission. For obvious reason 

the deteriorating effects of climate change and extreme weather 

on human health is likely to be best measured in locations with 

high population, better healthcare provision and monitoring. 

Recent studies show that the magnitude of the effect of extreme 

weather on human health and pathogen habitat depends on the 

baseline climate conditions, which may mitigate or aggravate the 

overall changes. Thus, the accurate climate regionalization is 

needed to accurately quantify and forecast such effects.     

 

1.2 Climate regionalization 

There are number of climate regionalization schemes exist. One 

of the well-known and often used regionalization schemes is 

Köppen-Geiger (KG) climate classification system. The KG 

climate classification system, developed in 1884 by the 

Russian/German climatologist Wladimir Köppen, is based on the 

fundamental concept that regional climate can be defined by a 

prevalent phenology (Geiger and Pohl 1954, Köppen, Volken et 

al. 2011). However, due to the technological limitations in the 

pre-satellite era it was not possible to reliably define phenology 

over large and remote areas. Consequently, the temperature and 

precipitation were used as available proxies to determine regions 

with similar climate. While the KG climate classification is still 

actively and widely used to quantify climate variation (Chen and 

Chen 2013), the arbitrary nature of suggested parameters in KG 

climate classification system has been criticized (Thornthwaite 

1943). Furthermore, this commonly used scheme does not 

account for population density and thus is not well suited for the 

tasks of capturing population-relevant properties.  

 

1.3 Application of Satellite Remote Sensing to Climate 

Regionalization 

Emerging data sources, such as vegetation indices, spectral 

radiation patterns, surface albedo and other measures, available 

with the advent of remote sensing technology, allow for a 

definition of a prevailing phenological pattern at virtually every 

place worldwide. It is now feasible to derive local phenology 

directly from satellite remote sensing data using one of the 

existing vegetation indices, which are based on the fact that 

plants’ canopy reflect sunlight strongly in the Near Infra-Red 

(NIR) part of the spectrum (wavelengths of 700 to 1000 

nanometers), while absorbing sunlight in the visible spectrum 

(400 to 700 nanometers). The clouds and the bare soil, including 

snow, have the opposite reflectance properties, reflecting 

strongly in all visible spectral bands, and absorbing the NIR part 

of the spectrum. Several worldwide phenological measures 

emerged during the past two decades with the advent of satellite 
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remote sensing technology. For example, the Normalized 

Difference Vegetation Index (NDVI) (Carroll, DiMiceli et al. 

2000) is defined as the ratio between the difference and the sum 

of the amount of sunlight reflected by vegetation canopy in the 

NIR and Red optical bands, respectively: 

 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

The spectral characteristics of the NDVI index allow the 

differentiation of phenology and states of vegetation. The greater 

values of the index indicate healthier vegetation cover with 

vigorous growth while lower values indicate declining, stressed 

or dying vegetation. NASA, using data provided by Moderate-

resolution Imaging Spectra-radiometer (MODIS) on board 

NASA's Terra and Aqua satellites, produces worldwide NDVI 

composites with 16 days overlapping temporal resolution and 

various spatial resolutions (LPDAAC-NASA 2000-2013). 

 

1.4 LKN regionalization  

Our recently proposed automated climate regionalization method 

called LKN-regionalization is based on k-means clustering 

algorithm over time-space (Liss et al. 2014). This method is using 

distributed NDVI scenes, which allow capturing both essential 

climate properties, and changes in climate patterns. The LKN 

method consists of the data limiting step (L-step) to reduce 

dimensionality by applying principal component analysis, a 

classification step (K-step) to produce hierarchical candidate 

regions using k-means unsupervised classification algorithm, and 

a nomination step (N-step) to determine the number of candidate 

climate regions using cluster validity indexes. Using 

comprehensive set of multiple satellite data streams, arranged as 

time series the method is capable of defining climate regions over 

large spatial extents. This is essential for large-scale 

epidemiological studies to account for geographic heterogeneity. 

 

1.5 Objectives 

In this study, we are extending LKN-method to incorporate the 

spatial features of target population by including a regularization 

term reflecting the spatial distribution of target population. We 

illustrate this extension with an example of climate 

regionalization in Ghana.  

 

2. DATA AND METHODS 

2.1 Satellite Remote Sensing Data 

MODIS NDVI and pixel quality (QA) data for 15 years was 

downloaded from the online Data Pool at the NASA Land 

Processes Distributed Active Archive Center (LP DAAC), 

USGS/Earth Resources Observation and Science (EROS) Center, 

Sioux Falls, South Dakota (LPDAAC-NASA 2000-2013). We 

arranged NDVI data so that it covers entire extent of our study 

region. Each of the two EOS satellites, Aqua and Terra, produced 

composites on overlapping 16 days schedule. By combining data 

streams from both satellites, it was possible to construct a time 

series with 8 days temporal resolution. The Vegetation Index data 

was aggregated in a layered space-time series. Normalized index 

allowed us to reduce or eliminate the effect of seasonally 

changing lighting conditions, thin clouds, atmospheric and 

anisotropic distortions. The water reflectance pattern differs 

significantly from almost any other land surface material by 

absorbing most of the incoming radiation. In order to avoid the 

misclassification due to the water reflectance pattern, the water 

bodies were masked for the analysis. 

Population density raster for Africa was downloaded from 

WorldPop site (Worldpop 2015). It was clipped in ArcGIS to the 

extent of the NDVI data set. 

 

2.2 Reducing correlation and clustering 

The time series of 8-days NDVI rasters naturally has a very high 

degree of spatial and temporal correlation. Following the original 

LKN-methodology we reduced dimensionality and 

orthogonalized this data by applying Principal Component (PC) 

decomposition to original time series. We retained 12 

components as per the original methodology.  

 

The original methodology employs cluster analysis to define 

regions with similar climate. It aims to assign a finite set of labels 

(also known as categories or classes) to a very large number of 

multidimensional objects (pixels, representing a defined area on 

the ground in our case) based on their similarity. Conventional 

clustering algorithm given a set of n data point distributed over 

time t 𝑥𝑛,𝑡 ∈  𝑅𝑛∗𝑡seeks to minimize the clustering objective 

function  

 

 
(𝑐1, … 𝑐𝑘) =

1

𝑛
∑ min

𝑘=1,…,𝑘
𝐷(𝑥𝑖 , 𝑐𝑘) ,

𝑛

𝑖=1

 (2) 

 

where 𝑐1, … , 𝑐𝑘 represent centers of the respective clusters 1 to k, 

and 𝐷(𝑥𝑖 , 𝑐𝑘) is a distance measure between each point and 

center of the clusters. 

 

2.3 Determination of the number of regions 

The clustering algorithm requires that the number of climate 

regions to be specified a priori. The LKN method employs 

cluster validity index criterion to decide optimal number of 

regions. We extend this approach by using several cluster validity 

criterion and adding a regularization term penalizing number of 

regions formed. In general cluster validity criterion measures 

goodness of clustering. In commonly used cluster validity 

indexes compactness of the clusters are compared with the 

dispersion of the cluster centroids. We are using three generally 

employed cluster validity indexes, Calinski-Harabasz(Caliński 

and Harabasz 1974), Dunn(Dunn 1974) and Davies-

Bouldin(Davies and Bouldin 1979). We have trivially 

transformed these indexes so that for each one of them the 

optimal solution seeks to minimize the validation criteria with 

respect to number of clusters. In addition to the cluster criterion 

we also added the regularization term 𝜆𝑘−𝑛. The validation 

criteria therefore becomes: 

 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘

( 𝑉(𝑥|𝑘) − 𝜆𝑘−𝑛) (3) 

 

where 𝑉(𝑥|𝑘) is the validity index for the clustering solution of 

the data set x with k regions, and 𝜆 is a regularization constant. 

 

2.4 Regionalization and population distribution 

We evaluate this approach by comparing distribution of the 

population with proposed regional division. In the context of the 

epidemiological and sociological research it is desired that 

population distribution across climate regions was uniform or as 

close to uniform as practical. 
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3. RESULTS 

3.1 Regionalization  

For this analysis, we studied the North West African country 

Ghana. Situated on the south shore of the West Africa’s Gulf of 

Guinea, and on the shores of the Lake Volta, one of the largest 

fresh water bodies in the World, it has a significant variability in 

the local climate as well as in the population density. It has ocean 

shoreline and dense 

rainforest, a lifeless 

desert and the 

mountain ranges. The 

large variability in the 

local climate patterns 

and significant 

variability in 

population density on 

a relatively small 

geographic footprint 

create a favourable set 

of conditions for this 

study. 

We have downloaded 2760 MODIS tiles (h17v7, h17v8, h18v7 

and h18v8), from the MOD13A2 and MYD13A2 collection. 

After pre-processing (mosaicking the tiles, extracting NDVI and 

QA SDSs, clipping to the study area, and re-projecting) the 

downloaded tiles, we performed principal component analysis as 

described in the method section. Top 12 principal components 

retained 96.9% of the total information in 46 components. The 

pseudo-colour image of the first three principal components 

presented in Figure  demonstrate a good separation of colours. 

The distinct spatial features can be clearly seen in that figure. 

 

We proceeded by clustering the first 12 principal components 

using k-means clustering algorithm with a range of 2 to 28 

classes. The validity of each clustering result was assessed by the 

Calinski-Harabasz cluster validity index. The index reaches 

minimum value at the 𝑘 = 3. It also is minimized at 𝑘 = 15 and 

𝑘 = 25 regions, suggesting that these could also be considered as 

the candidate values (Figure 2). 

 

 
Figure 2. Calinski-Harabasz index value 

We have added the regularization term as described in the method 

section, and also included two additional cluster validity 

measures. The two added indices do not confirm the Calinski-

Harabasz’s selection of the 3-region solution as a preferred one. 

Instead, with added regularization all three indexes concur, that 

the better overall solution to the climate regionalization are 8 or 

15 clusters for the study area (Figure 3). 

 

 
Figure 3. Regularized cluster validation criteria 

3.2 Distribution of the population 

The population in the study region distributed very unevenly. The 

two major cities, Accra and Kumasi, account for nearly 20 

percent of the total population of 33 million. In the Table 1 we 

aggregated number of people residing in each of the assigned 

climate region. For the first column, K-03, for example, there are 

three defined regions, with the distribution of population 56.5, 

11.5 and 32.0 per cent (18.8, 3.9 and 10.7 million) respectively. 

It is clear that population is allocated very unevenly to these 

regions. Increasing number of regions to 8 and 15 (K-08 and K-

15, respectively) as is suggested by the regularized ensemble of 

cluster validity indexes indeed creates a much more even 

distribution of the population and leads to a sharp decline in the 

population variance between the climate regions. The standard 

deviation of population counts across regions declines from 7.8 

for 3 regions, to 2.5 to 1.4 for 8 and 15 regions, respectively 

Figure 1. Pseudo-color image of the first three principal components Figure 1.Pseudo-color image of the first three principal 

components 
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Table 1. Population distribution across 3, 8, 15 and 25 climate 

regions 

K-03 K-08 K-15 K-25 

18,815.4(56.4%) 3,885.5(11.6%) 1,423.1(4.3%) 808.8(2.4%) 

3,885.5(11.6%) 9,645.3(28.9%) 3,885.5(11.6%) 3,885.5(11.6%) 

10,673.9(32.0%) 3,242.7(9.7%) 1,237.0(3.7%) 701.3(2.1%) 

 1,655.5(5.0%) 817.3(2.4%) 2,751.0(8.2%) 

 3,178.4(9.5%) 4,853.2(14.5%) 736.2(2.2%) 

 5,812.2(17.4%) 2,113.6(6.3%) 1,216.5(3.6%) 

 2,223.7(6.7%) 2,101.3(6.3%) 685.2(2.1%) 

 3,731.4(11.2%) 1,057.5(3.2%) 552.3(1.7%) 

  3,860.9(11.6%) 714.8(2.1%) 

  1,851.5(5.5%) 590.9(1.8%) 

  801.4(2.4%) 1,740.4(5.2%) 

  3,351.5(10.0%) 1,290.1(3.9%) 

  1,487.6(4.5%) 957.0(2.9%) 

  2,703.9(8.1%) 4,709.6(14.1%) 

  1,829.6(5.5%) 1,706.3(5.1%) 

   636.5(1.9%) 

   946.0(2.8%) 

   476.2(1.4%) 

   2,024.4(6.1%) 

   949.9(2.8%) 

   1,733.2(5.2%) 

   1,254.7(3.8%) 

   1,054.1(3.2%) 

   788.7(2.4%) 

   465.1(1.4%) 

 

4. DISCUSSION 

Climate is an important factor in environmental and public 

health, climate change adaptation, and it affects many facets of 

human life. The ability to detect differences in the climate and 

the pattern of change of the climate is important and is a subject 

of a growing body of research. Using an automated method to 

define climate regions based on the satellite remote sensing data 

allows uniform definition of regional climate patterns. 

Furthermore, it allows adapting climate regions to the effects of 

climate change. We have demonstrated, that by using 

regularization it is possible to adjust climate regionalization to 

address needs of epidemiological and public health research. This 

allows for the tailoring of the regions to the specific discipline, 

without losing the generality of the LKN methodology.  

 

It is also worth noting that there are several hyper-parameters in 

this methodology, that may require further study and tuning to 

the specific areas of interest and the requirements of the research 

protocol. The number of components extracted from the PCA 

decomposition, type of the cluster indexes used and the voting 

methodology for the selection of the suitable number of regions, 

and the strength of regularization require additional research to 

utilize their potential to the fullest. 

 

Future directions. This study is part of our larger effort to 
assess and evaluate the effect of extreme weather and 
climate on US elderly residents. We have studied Ghana 
as a pilot site. Ghana has sufficient diversity in its climate 
and population density. At the same time it is substantially 
smaller than Continental United States both in size and 
population count which made it an ideal site for the 
development and testing of regionalization methodology. 
 

5. CONCLUSION 

We demonstrated the applicability of LKN methodology in 

application to another region with different climate and 

demographic patterns. Suggested enhancements and 

regularization term allows more robust determination of the 

climate regions. Further study into hyper-parameter 

determination is required to facilitate integration of this 

methodology in the wider context of decision support framework 
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