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ABSTRACT: 
 
Using high resolution satellite imagery to detect, analyse and extract landslides automatically is an increasing strong support for 
rapid response after disaster. This requires the formulation of procedures and knowledge that encapsulate the content of disaster area 
in the images. Object-oriented approach has been proved useful in solving this issue by partitioning land-cover parcels into objects 
and classifies them on the basis of expert rules. Since the landslides information present in the images is often complex, the 
extraction procedure based on the object-oriented approach should consider primarily the semantic aspects of the data. In this paper, 
we propose a scheme for recognizing landslides by using an object-oriented analysis technique and a semantic reasoning model on 
high spatial resolution optical imagery. Three case regions with different data sources are presented to evaluate its practicality. The 
procedure is designed as follows: first, the Gray Level Co-occurrence Matrix (GLCM) is used to extract texture features after the 
image explanation. Spectral features, shape features and thematic features are derived for semiautomatic landslide recognition. A 
semantic reasoning model is used afterwards to refine the classification results, by representing expert knowledge as first-order logic 
(FOL) rules. The experimental results are essentially consistent with the experts’ field interpretation, which demonstrate the 
feasibility and accuracy of the proposed approach. The results also show that the scheme has a good generality on diverse data 
sources. 
 
 

1. INTRODUCTION 

As major natural hazards, landslides not only pose severe 
threats to human life, property, natural environment, 
constructed facilities and infrastructure (Nadim et al., 2006; 
Lacasse et al., 2009; Klose et al., 2014), but also have relevant 
indirect impact on society and various induced economic effects 
(Scaioni et al., 2014). Routine quantification of landslide 
occurrence is essential to assessment, mitigation and 
management of landslide risk (Metternicht et al., 2005). Since 
landslides usually leave visible marks on the territory, visual 
image interpretation of optical images is beneficial to the 
process of landslide identification, which is important for 
landslide mapping, landslide inventories, and landslide hazard 
assessment (Guzzetti et al., 2012; Cheng et al., 2013). 
Conventional methods for delineating landslides on imagery in 
terms of field survey and manual interpretation are tedious, 
error-prone, and inherently subjective (Malamud et al., 2004; 
Albrecht et al., 2010).  
 
The object-oriented approach (Aksoy et al., 2012) is introduced 
to realize automated landslide extraction and analysis of images 
by grouping pixels into objects that present extremely relevant 
characteristics (Benz et al., 2004). Using this approach to detect 
landslides refers to segment images based on a series of criteria 
that related to spectral, shape, color and contextual information 
et al (Blaschke, 2010). However, Landslides usually have 
spectral characteristics similar to roads, river sand, or barren 
rock, mainly using spectral and size criteria to create landslide 
objects may not be consistent with the real landslide areas 
(Martha et al., 2011). To detect landslides unambiguously, it is 

critical to establish comprehensive expert system rules by 
combining assessment of spectral, spatial, morphological, and 
contextual parameters (Navulur, 2006). This process in terms of 
obtaining useful spatial and thematic information on the objects 
by using human knowledge and experience is defined as the 
extraction of the image semantic (Forestier et al., 2012).  
 
The lack of consistence between the content (i.e. objects) 
extracted from images and the interpretation is called semantic 
gap (Smeulders et al., 2000). A number of studies with different 
methodologies based on imagery and object-oriented approach 
have been accomplished in order to attempt reducing the 
semantic gap (Forestier et al., 2012; Belgiu et al., 2014; Rejichi 
et al, 2015; Luo et al., 2016). Among all these researches (see 
also Oliva-Santos et al., 2014; Hudelot et al., 2003; Liu et al., 
2007; Arvor et al., 2013), the most frequently used method is 
applying ontologies to formalize the image interpretation 
knowledge for developing automated image classification 
procedures, which are usually defined as formal, explicit 
specification of a shared conceptualization (Gruber, 1993). 
Most of these ontologies are developed by using Web Ontology 
Language (OWL) specifications (Motik et al., 2008). The OWL 
language is based on the Description Logics (DL) and through 
which the statements can be automatically tested by a reasoner 
(Tsarkov et al., 2006). Nevertheless, OWL decidability is 
achieved at the price of losing expressiveness, thus OWL 
reasoners are unable to cope with more expressive ontologies 
(Álvez et al., 2012). 
 
Additionally, understanding the causes and triggering 
mechanisms is important for landslide risk assessment and 
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mitigation (Lacasse et al., 2009). The landslide causes are the 
reasons that a landslide occurred in a location at a specific time, 
which can be considered as the factors that made the slope 
unstable and vulnerable to failure, and a trigger is a single event 
that finally initiates a landslide. Landslide causes have two 
primary categories: natural occurrence and human activities. 
Water, seismic activity and volcanic activity are the three major 
triggering mechanisms in the natural occurrence category.  
 
Since understanding the landslide causes and triggering 
mechanisms can help determine the landslide affected areas and 
develop landslide prediction models. It is reasonable to assume 
that modelling the landslide causes and realizing semantic 
reasoning based on them can provide assistance to the landslide 
extraction from imagery. On the other side, First-order logic 
(FOL) (Lifschitz et al., 2008) is a well-known and expressive 
formalism whereas DL can be taken as decidable subsets of it. 
Considering the semantic formalization of landslide causes can 
be complex and expressive, using FOL provers in a hybrid tool 
may save effort in developing algorithms and reasoners for 
various DLs (Tsarkov et al., 2003), and more importantly, may 
provide a use means of dealing with the complex DLs that 
represent the knowledge of landslide causes. 
 
In this paper, we propose a framework for landslide extraction 
using semantic reasoning on the basis of object-oriented 
approach and FOL. The framework has two potential benefits. 
One hand, we intend to create a transferable and automated 
method for landslide extraction that increases the classification 
accuracy and the generality among diverse data sources. On the 
other hand, a model considering the landslide causes and 
triggering mechanisms in FOL can provide a computer-readable 
description of this knowledge, which may be useful for other 
relevant research in the future.  
 
The rest of this paper is organized as follows: after describes the 
study areas and relevant data in Section 2, the paper deals with 
the object-oriented landslides extraction approach and gives a 
short analysis of the preliminary classification results in Section 
3. Section 4 first models three types of landslides triggered by 
different physical causes in the form of FOL, and then put 
forward a method to realize semantic reasoning by using these 
models in Prover9 (McCune, 2007). This study is summarized 
in Section 5.  
 

2. STUDY AREAS AND USED DATA SETS 

Three regions are used as the study areas in this paper, 
including Dujiangyan affected by Wenchuan earthquake, 
Baoying affected by Ya’an earthquake, and Neiliu railway 
landslide area (Figure 1). The information of the images with 
regard to these regions is shown in Table 1. 
 
Data set A: The Wenchuan earthquake on May 12, 2008 was 
the largest seismic event in China in the last half century, 
caused massive fatalities and injured. The earthquake triggered 
around 60,000 landslides (Gorum et al., 2011) and considerable 
quantity of consequent secondary hazards. In this paper, we 
choose Hongkou County, Dujiangyan City as study area, which 
is about 20 kilometres from the earthquake’s epicentre. The 
IKONOS image cover about 53 km2 of Hongkou County 
acquired on 28 June 2008 is used in the experiment. 
 
Data set B: The second study area is Baoxing County, Ya’an 
City, in Sichuan Province, China. This area was severely 
damaged by the 2013 Ya’an earthquake. The data used in this 

research are UAV images that cover the whole area of Baoxing 
County. The images (size: 5616*3744 pixels) were acquired 
from a height of 500 m using a ZC-5 UAV (TopRS) with a 
Canon EOS 5D Mark II camera (35.5132 mm focal length) on-
board. The UAV were launched on April 21, 2013, one day 
after the occurrence of the Ya’an earthquake. We chose a study 
region (2410*1122 pixels) from the mosaics images after pre-
processing. 
 
Data set C: On August 2, 2013, a landslide event occurred along 
the Neijiang-Liupanshui railway and the railway has broken off 
because of this event. SPOT6 images of this area were acquired 
on October 12, 2013. Based on these images, a 15m DEM is 
created by stereo-image matching with manual editing. 
 

Disaster 
event 

Sensor Acquisition 
time 

Resolution DEM 
data 

Wenchuan 
Earthquake 

IKONOS 
PAN/MSI 

2008-06-28 
Pan: 1m; 
MSI: 4m 

SRTM 
90 m 

Ya’an 
Earthquake 

Canon 
EOS 5D 
Mark II 
camera 

2013-04-21 0.6m 
SRTM 
90 m 

Neiliu 
railway 
landslide 

SPOT 6 
 PAN/MSI 

2013-10-12 
Pan:1.5m; 
MSI: 6m 

Stereo-
image  
15 m 

Table 1. Study areas and data information 

 
Figure 1. The locations and images of the study areas 

 
3. IMAGE PROCESSING AND INITIAL LANDSLIDE 

EXTRACTION 

In this section, object-oriented approach is used to realize initial 
landslide extraction. Firstly, the pre-processing of three regions’ 
images is conducted, including radiometric correction, ortho-
rectification and pansharpening before classification and 
landslide extraction. Then, segmentation and feature selection 
are implemented as the first and second step of the object-
oriented approach. The initial landslide extraction is conducted 

(A) Hongkou 
IKONOS image (RGB) 

(B) Baoxing UAV image 

(C) Neiliu railway landslide 
SPOT 6 (RGB) 
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based on the selected features and segmentation with a 
supervised classification method. 
 
3.1 Pre-processing 

In order to eliminate or correct image distortion caused by 
radiometric errors, the radiometric correction is used. After that 
the ortho-image is obtained using SRTM DEM data or the 
DEM generated by stereo images of study areas. Pansharpening 
is also adopted to improve the spatial resolution of multi-
spectral images and retain spectral information and high 
resolution. In this research, we use the Gram-Schmidt spectral 
fusion method to fuse and generate a four-band pansharpened 
high resolution multi-spectral image, with a higher resolution 
panchromatic image to reduce uncertainty and minimize 
redundancy (Sun 2013). We integrate the multi-spectral image 
(resolution: 4m, 6m) and panchromatic image (resolution: 1m, 
1.5m) from IKONOS images and SPOT 6 images based on the 
pixels through Gram-Schmidt spectral sharpening algorithm 
using ENVI 5.1 software. After the pre-processing, the orth-
images (IKONOS, UAV, and SPOT6) of three study areas are 
obtained. 
 
3.2 Object-oriented approach 

There are two major steps of an object-oriented approach, 
including image segmentation and image object classification. 
In this paper, we use the multi-resolution segmentation 
algorithm, a bottom-up region-merging technique, to obtain the 
ideal objects. The features are used as criteria to classify these 
objects are Normalizes Difference Vegetation Index (NDVI), 
Normalizes Difference Water Index (NDWI) (McFeeters, 1996), 
contrast, bright-ness, density, the DEM and the Gray Level Co-
occurrence Matrix (GLCM), et al. 
 
3.2.1 Segmentation: Image segmentation, the first step in 
object-oriented approach, is crucial to the detection extent and 
classification accuracy (Rau et al., 2014). It is the basis of 
object-oriented analysis and has a direct impact on the 
subsequent analysis. There have been amounts of segmentation 
algorithms for processing remote sensing images. A 
comprehensive review of these algorithms can be found in Dey 
et al., (2010). In this paper, we use the Multi-Resolution Image 
Segmentation (MRIS; Benz et al., 2004), a region-growing 
program that merges objects upwards from the pixel level based 
on a user-specified balance of shape and spectral measures 
(Parker, 2013). The segmentation algorithm is implemented in 
the Definiens eCognition software (eCognition, 2014a).  
 
Additionally, scale parameter and composition homogeneity are 
selected to distinguish the different objects’ heterogeneity. 
Composition of homogeneity includes color (spectral of bands) 
and shape (compactness and smoothness). Through a trial-and-
error approach, nearly desirable objects are combined into a 
whole according spectral and shape characteristics. 
 
Before segmentation, the edge detection is used to add the 
segmentation to retrain the shape of road and other obvious 
boundary objects. For example, in Data set A, we choose 
different scale parameters (30, 50, and 100). Multi-spectral 
bands (blue, green, red and near-infrared (NIR)) are equally 
weighted with a value of one, and an edge detection filter is 
assigned a weight of five. The shape criteria are weighted with 
0.2 and the compactness are weighted with 0.6. The parameters 
of the three data sets are shown in Table 2. 
 

 Scale parameter Shape Compactness 

Data set A 30,50,100 0.2 0.6 
Data set B 10,15,20 0.2 0.8 
Data set C 30,50,100 0.1 0.9 

Table 2. Segmentation Parameters 
 
3.2.2 Feature Extraction: By studying and comparing other 
landslide extraction methods in the literature review (Lahousse 
et al., 2011; Rau et al., 2014), we determine to use the following 
object features for extraction:  
 
a. Due to the slide of rocks, the regions after landslides are no 
vegetation covering surface. Using NDVI can discriminate 
vegetation and non-vegetation. Because the study areas include 
water, NDWI is used to remove the influence of the water. 
 
b. Brightness is the weighted average of the image intensity for 
each object (eCognition, 2014b). The landslide has a higher 
intensity than other objects. Hence, we can filter out bare soil or 
vegetation from landslide areas by using brightness. 
 
c. For removing shadow from the background, contrast is also 
taken into account. In addition, the features such as 
homogeneity, mean, density of GLCM and the DEM are used to 
assist the extraction of landslides as well. 
 
3.2.3 Classification: After an image is segmented, its objects 
could be detected and classified using rule set. Firstly, we 
utilize the selected features and build rule set to extract 
vegetation and water. Then, appropriate samples and feature are 
chosen to classify the landslide and other land types using a 
supervised classification - the nearest neighbor method.  
 
Through observing images, we classify the regions to seven 
types, including vegetation, water, building, road, shadow, 
landslids and bareland. In Data set B, there are not obvious 
roads. So we use other land insteading of road and building. 
 
Furthermore, we extract the NDVI, vegetation regions from the 
images and classify landslides as non-vegetation regions. Then 
we calculate the NDWI to distinguish the water. After that, 
based on the samples from three regions and the features we 
chose, we obtaion the classification results through Nearest 
Neighbor Method (Figure 2). Because our aim is to extract 
landslides, other type lands are not considered in the accuracy 
analysis. Figure 3 show the initial landslide extraction results. 
The results show that some barelands, buildings and roads are 
classified as the landslides because of the similar spectral 
characteristics. 600 sample points in Data set A, 250 sample 
points in Data set B and 150 sample points in Data set C of 
landslides are chosen as test sample points. The same number of 
non-landslide sample points in each data set is selected. Overall 
accuracy, Kappa coefficient and user’s / product’s accuracy are 
shown in Table 3. 
 
As discussed above, barelands, buildings and roads have similar 
spectral characteristics, which means separating them from each 
other only rely on optical methods is a difficult task. Hence, 
additional information that can be used to distinguish between 
these objects is vital. In the following section, we introduce a 
means of using FOL to represent the knowledge of landslide 
causes mechanisms as additional information to the initial 
extracted landslides. 
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Figure 2. Classification results based on object-oriented 

approach 
 

 
Figure 3. Results of initial landslide extraction 

 
 

Overall 
accuracy 

Kappa 
coefficient 

Landslide 

Product’s 
accuracy 

User’s 
accuracy 

Data set A 82.33% 0.6997 85.66% 77.67% 
Data set B 76.80% 0.6234 78.38% 74.00% 
Data set C 81.67% 0.6901 80.64% 83.33% 

Table 3. The accuracy analysis of initial landslide extraction 
 

4. LANDSLIDES EXTRACTION USING SEMANTIC 
REASONING 

4.1 Modelling Landslides in FOL 

Among all the physical causes of landslides, strong earthquakes 
are the prime triggering factors (Keefer 1984). The major type 
of landslides in two of our three study areas (Hongkou county 
and Baoxing county) is in this case. Another primary cause of 
landslides is slope saturation by water, which may occur as 
intense rainfall, snowmelt, changes in ground-water levels, and 
surface-water level changes along coastlines, earth dams, and in 
the banks of lakes, reservoirs, canals, and rivers (USGS, 2008). 
In our case, the Neiliu railway landslide is basically trigged by 
strong rainfall. 
 
Apart from triggering serious, coseismic landslides, strong 
earthquakes also lead to increased post-seismic slope instability 
for a long period of time that is very susceptible to future 
landslides under heavy rainfall conditions. For example, a 
strong rainfall event occurred four months after the Wenchuan 
earthquake and induced 969 new landslides and enlarged 169 
existing landslides (Tang et al., 2011).  

Based on the study areas and above analysis, we attempt to 
model three kinds of landslides that are strongly related to these 
two physical causes, earthquake and intense rainfall: 
 
a. Landslide triggered by earthquake; 
b. Landslide triggered by intense rainfall; 
c. Landslide triggered by intense rainfall after an earthquake. 
 
Huang (2015) suggests four main factors that increase the 
susceptibility of a certain area to earthquake-induced landslides 
are distance from seismic fault, slope profile types, slope angle 
and elevation. Based on these assumptions, the semantics of 
landslides triggered by earthquake can be defined through a 
translation into following first-order formula: 

( ) ( ) ( )

( ( ( ) ))

( ( ) )

( ( ) )

( ( ( )

?o, ? l , ?d

Object ?o Location ?o,?l DEM ?d

? f distance_to_fault ?l,?f certainDistance

has_elevation ?l,?d certainValue

slope_angle ? l ,?d certainDegree

? p slope_profile ?l,?p certainTy

  

  

  

 

 

  ))

( )

pe

seismic_landslide ?o

 

It states that an object obtained from an image locate in a 
certain location which near the seismic fault, has a certain 
elevation value or a certain angle, or with a certain type of slope 
profile can be an earthquake induced landslide.  
 
Hong et al., (2007) reported that elevation, vegetation and the 
type of soil are preferentially susceptible to rainfall-triggered 
landslides based on empirical assumptions. Their analysis can 
be deduced as following expression: 

( ) ( ) ( )

( (( ( ) )

( )))

( ( ( ) ))

( ( ( ) ))

?o, ? l , ?d

Object ?o Location ?o,?l DEM ?d

? r has _ elevation ?l,? d certainValue

receive _ more _ ra infall ?d,?r

? s soil _ type ?l,? s certainType

? v vegetation ?l,? v certainType

seismic_

  

  

 

 

  

  

 ( )

( )

landslide ?o

ra infall_landslide ?o

 

It expresses that an object at a high elevation area is easier 
receive greater amounts of rainfall, and if it has certain soil type 
or certain land cover (e.g. bare land), it can be a rainfall 
triggered landslide, even there was no earthquake happened 
before the rainfall events. 
 
Tang et al., (2009) deem that an abundance of loose debris and 
numerous extension cracks were induced on hill slopes after the 
Wenchuan earthquake, these debris and cracks led to rainfall 
triggered landslides during subsequent heavy rains. Other 
factors that have influence on the distribution of post-seismic 
landslides are the proximity of active faults and major rivers; 
the lithology, especially in Silurian slates and phyllites; and 
basically occurred at elevation between 900 m and 1500 m 
(Tang et al., 2011). The semantics under these factors can be 
deduced as following expression: 

 

Data set C 

Data set A 

Data set B 

Data set A 

Data set B 

Data set C 
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( ) ( ) ( )

(( ( ) )

( ( ) ))

( ( ( ) ))

( ( (

?o, ? l , ?d

Object ?o Location ?o,?l DEM ?d

has _ elevation ?o,? d certainValue

has _ elevation ?o,? d certainValue

? f dis tan ce _ to _ fault ?l,? f certain Dis tance

? m dis tan ce _ to _ mainRiver ?l,? m

  

  

 

 

  

 )

))

( ( )

( )))

( ( ( ))

( ) ( )

(

certainDi s tan ce

? e(affected_by_earthquake ?l,?e

cause_unstable ?e,? l

? g geo log ic _ unit ?l,? g ) certainType

seismic _ landslide ?o rainfall_landslide ?o

post _ seismic _ ra infall_landslide ?o

 



 

  

 

 )

 

4.2 Semantic Reasoning with Prover9 

We use the automated theorem prover Prover9 to realize the 
first order reasoning. The Prover9 is based on refutation. This 
approach consists in proving that a goal ψ follows from a set of 
axioms Φ by proving that the conjunction Φ ∧ ¬ψ is 
unsatisfiable, on the assumption that is satisfiable.  
 
For our purpose, we input the formulae presented from Section 
4.1 as a set of clauses. The goal is a description of one object 
selected from the initial classification results in Section 3.2, 
along with some additional conditions. The description is 
organized as FOL language. After implementing the inputs in 
Prover9 and if a proof can be found, the object can be 
determined whether it is a landslide or not based on the proof 
result. 
 
For example, suppose an object from the classification results of 
Data set A is actually a bareland that incorrectly classified as 

landslide. It is at a distance of 2000 meters from the seismic 
fault, with an elevation of 300 meters and has a concave-shaped 
slope while the slop angle is 25º. Then the goal is about to be 
proved can be described as: 

( ) ( ) ( )

( ( ( ) 2000))

( ( ) 300)

( ( ) 25)

( ( ( ) ))

( )

?o, ? l , ?d

Object ?o Location ?o,?l DEM ?d

? f dis tan ce _ to _ fault ?l,? f

has_elevation ?l,?d

slope_angle ? l ,?d

? p slope_profile ?l,?p mountainRidge

seismic_landslide ?o

  

  

  

 

 

  



 

The input assumptions are based on the first formula in Section 
4.1 with slight modifications: 

( ) ( ) ( )

( ( ( ) 15000))

(( ( ) 700)

( ( ) 1500))

(( ( ) 40)

( ( ) 50))

( (

?o, ? l , ?d

Object ?o Location ?o,?l DEM ?d

? f dis tan ce _ to _ fault ?l,? f

has_elevation ?l,?d

has_elevation ?l,?d

slope_angle ? l ,?d

slope_angle ? l ,?d

? p slop

  

  

  

 

 

 

 

 ( ) ))

( )

e_profile ?l,?p mountainRidge

seismic_landslide ?o





 

The value of elevation, slop angle, and slope profile can be 
derived from DEM while the distance from seismic fault is 
calculated from a vector map, and other information like the 
slope profile or soil type can be retrieved from a database. After 

input the assumptions and the goal, and start the search in 
Pover9, a proof is found and indicates that the object is not a 
seismic landslide. 
 
We have tested the first two landslide models, i.e. landslide 
triggered by earthquake and landslide triggered by intense 
rainfall, with the methods we proposed based on the three data 
sources. In other words, we translate the samples from the 
preliminary classification results obtained in Section 3.2 into 
FOL language and input them in Prover9. The running results 
are then used to improve the initial landslide extraction. The 
whole scheme proposed in this work is showed in Figure 4. 
Figure 5 and Table 4 show the results and accuracy analysis 
after using semantic reasoning to improve the initial extracted 
landslide objects. 
 
For the model of landslide triggered by intense rainfall after a 
strong earthquake, since we do not have images taken after the 
September rainstorm event in Wenchuan, it has not been 
verified in this research. However, as the Prover9 can only 
process one input at a time, the process of large sample volume 
can be really time-consuming. Hence, we still need to find a 
way to improve the efficiency and the automaticity. The 
methods in the work of Tsarkov (2004) or Álvez (2012) may 
provide potential solutions. 
 

 
Figure 4. The proposed framework of the landslide extraction 

based on object-oriented approach and semantic reasoning 
 

 
Figure 5. Results of landslide extraction 

 
 

Overall 
accuracy 

Kappa 
coefficient 

Landslide 

Product’s 
accuracy 

User’s 
accuracy 

Data set A 89.58% 0.8113 91.30% 87.50% 
Data set B 84.00% 0.7241 84.27% 83.60% 
Data set C 88.33% 0.7910 87.10% 90.00% 
Table 4. The accuracy analysis of the landslide extraction after 

using semantic reasoning 

 

Data set C 

Data set A 

Data set B 
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5. CONCLUSION 

Extraction of landslides from images based on object-oriented 
approach has been proved to be an effective way in disaster 
management, risk assessment and mitigation. Despite great 
development has been achieved in the remote sensing 
technology, the process of landslides extraction still highly rely 
on manual interpretation and the knowledge of domain experts. 
We present a relative new perspective on landslides extraction 
in terms of using FOL language to express the knowledge of 
landslide triggering factors. The intention is to create a 
transferable and less dependency on manual intervention mean 
of landslides extraction, which can be applied to heterogeneous 
data sources. Based on the data from three study areas and 
literature reviews, we have modelled three types of landslides in 
FOL according to different scenarios. To evaluate the method, 
we use eCogintion to prepare preliminary landslide objects from 
the images. The initial classification results show that the 
overall accuracy of Data set A, Data set B and Data set C are 
82.33%, 76.80% and 81.67% respectively. Then we test the 
feasibility of our model by choosing object samples as inputs 
within the FOL theorem prover Prover9. With the help of 
semantic reasoning, the final overall accuracy of Data set A, 
Data set B and Data set C reached into 89.58%, 84.00% and 
88.33% respectively. However, the methods presented in this 
paper are still at its beginning stage, because the occurrence of 
landslides is a complex function of various natural and human 
factors, but also because FOL theorem provers cannot be used 
directly. These two main challenges point out the directions of 
our future work. 
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