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ABSTRACT: 
 
A synergistic fusion of the Soil Moisture and Ocean Salinity (SMOS) L2 soil moisture with the Moderate Resolution Imaging 
Spectroradiometer (MODIS)-derived land surface temperature (LST) and several water/vegetation indices for agricultural drought 
monitoring was tested. The rationale of the calculation is based on the inverse relationship between LST and vegetation condition, 
related in turn with the soil moisture content. All the products were time-integrated, including the lagged response of vegetation. The 
product aims to detect and characterize soil moisture drought conditions and, particularly, to identify potential short-term agricultural 
droughts among them. The new index, so-called the Soil Moisture Agricultural Drought Index (SMADI), was retrieved at 500 m spatial 
resolution at the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) area from 2010 to 2014 
at 8-days temporal scale. SMADI was compared with other agricultural indices in REMEDHUS through statistical correlation, 
affording a good agreement with them, and depicting a suitable description of the drought conditions in this area during the study 
period. 
 
 
 

1. INTRODUCTION 

Drought is a normal, recurring feature of climate, and occurs in 
virtually all climatic regimes. It is a temporary anomaly, in 
contrast to aridity, which is a permanent feature of climate and is 
restricted to low rainfall areas (Wilhite, 2011). Despite the 
difficulty of a universal definition, an agricultural drought refers 
to soil water deficit affecting the crop yield, whereas a 
meteorological drought is characterized by a prolonged and 
abnormal deficiency of precipitation. 
 
Drought indices are used for identifying, classifying and 
monitoring drought conditions. They allow quantitative 
assessment of intensity, duration and spatial extent of anomalous 
climatic conditions and therefore support decision-making 
systems (Sánchez et al., 2016). Well-known indices such as the 
Standardized Precipitation Index (McKee et al., 1993) are mostly 
precipitation-based, even though  there are water budget indices 
such as the Palmer Drought Severity Index, (Palmer, 1965), soil 
moisture indices (Martínez-Fernández et al., 2015), and many 
other hydrological and aridity indices, all of them meant to 
indicate, from different points of view, water deficit for a given 
area.  
 
The remote sensing-based indices have the advantage of their 
wide spatial distribution and coverage, as well as the temporal 
availability of data. Several agricultural drought indices based on 
remote sensed products have been proposed, many of them based 
on vegetation indices (Martínez-Fernández et al., 2016). 
Vegetative drought indices based on the Normalized Difference 
Vegetation Index (NDVI) have been widely and successfully 
used to identify and monitor areas affected by drought at regional 
and local scales (Bayarjargal et al., 2006; Bhuiyan et al., 2006; 
Hayes and Decker, 1998; Kogan, 1997; Tucker and Choudhury, 
1987). However, in some cases, only vegetation data was not 
sufficient for accurate drought analysis. Therefore, thermal 
channels were studied to receive additional information about 

drought (Kogan, 1995) through the Land Surface Temperature 
(LST). The vegetation temperature acts as a proxy of the plant 
stress caused by both scarce/excessive wetness. Furthermore, if 
LST-NDVI were jointly considered as a surface condition 
descriptor, surface properties such as soil water content and 
evapotranspiration may be inferred (Carlson, 2013). Agricultural 
drought indices based on soil moisture and evapotranspiration 
deficits should help effectively monitor agricultural drought 
(Sivakumar et al., 2011). There is a remarkable inverse 
relationship between LST and vegetation condition, which in turn 
is related with soil moisture content. The LST/NDVI slope has 
been used to assess information related to areal averaged soil 
moisture conditions (Goetz, 1997; Sandholt et al., 2002) and on 
climate and drought monitoring (Karnieli et al., 2010; McVicar 
and Bierwirth, 2001; Sánchez et al., 2016). The negative slope 
identified in site- and time- specific studies between both 
variables is the basis of several studies about climate and drought 
monitoring (Karnieli et al., 2010).  
 
The remote sensing approach for drought monitoring has been 
enriched with the recent launch of new missions devoted to 
global surface soil moisture (SSM) monitoring such as the Soil 
Moisture and Ocean Salinity (SMOS) and the Soil Moisture 
Active and Passive (SMAP), which opened new perspectives in 
the drought indices developing. Indeed, soil moisture is 
unquestionably a quantitative indicator of drought (Sridhar et al., 
2008). These missions are a challenging opportunity to 
incorporate the remotely sensed-soil moisture into composite 
approaches based on coupled climate, soil and water data 
indicators. However, the novel availability of soil moisture at 
global scale led to a limited research using satellite soil moisture 
observations for drought analysis (Chakrabarti et al., 2014; 
Martínez-Fernández et al., 2016; Martínez-Fernández et al., 
2015; Scaini et al., 2015). In this line, this work aimed to merge 
LST and NDVI from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and SMOS-SSM to develop a new 
agricultural drought indicator, the Soil Moisture Agricultural 
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Drought Index (SMADI), including actual soil and temperature 
conditions together with the lagged response of the vegetation 
based on vegetation indices. Alternatively, normalized water 
indices based on the short-wave infrared MODIS bands were also 
tested as a vegetation water status indicator. In order to assess the 
results, two comparisons were made with other agricultural 
indices calculated at the Soil Moisture Measurement Stations 
Network of the University of Salamanca, REMEDHUS, where 
several drought indices have been previously tested (Martínez-
Fernández et al., 2016; Martínez-Fernández et al., 2015; Sánchez 
et al., 2016; Scaini et al., 2015). 
 

2. DATA AND METHODS 

2.1 Imagery 

The eight-day composite MYD09A1 surface reflectance product 
at 500 m and the 1 km resolution daily LST (product MYD11A1) 
were selected. LST day (1:30 P.M.) and LST night (1:30 A.M.) 
were considered separately. In order to spatially match both 
products, the LST at 1 km was assigned to the four pixels at the 
500 m resolution. Regarding their different temporal interval, the 
daily MYD11A1 product was transformed into an eight-day 
product similar to the MYD09A1, using the average of the eight 
antecedent days. That calculation provided 46 composites for 
each year.  
 
As a vegetation indicator in SMADI, four alternatives were 
tested. The rationale was in all cases a normalized index with the 
form (ρNIR-ρi)/(ρNIR+ρi), where ρi stands for the surface 
reflectance from bands 1, 5, 6 and 7 (648, 1240, 1640 and 2130 
nm respectively) and ρNIR is the reflectance from band 2 (858 
nm). Using band 1, the results is the well-known NDVI (Rouse 
et al., 1974), and using 5, 6 and 7 bands, the results are the so-
called Normalized Difference Water Index (NDWI) (Gao, 1996). 
 
For the soil moisture dataset, the SMOS Soil Moisture Level 2 
User Data Product version 5.51 was used in this study, which is 
geolocated and projected into the Discrete Global Grid (DGG) 
with equally spaced nodes at ~15 km. Data was filtered 
(González-Zamora et al., 2015) and averaged into an eight 
antecedent-days composite, similarly to the LST product.  Since 
the resulting SMOS surface soil moisture product is merged to 
the MODIS data, and they have different spatial resolution, each 
MODIS pixel at 500 m was allocated with its corresponding 
DGG.  
 
2.2 Index fundamentals and calculation 

Kogan (1990) developed the Vegetation Condition Index (VCI) 
as an indicator of environmental stress through the NDVI 
normalized with the maximum and minimum range for each pixel 
over the available imagery (1):  
  
𝑉𝑉𝑉𝑉𝑉𝑉 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚)   (1) 
 
where NDVIi is the eight day-smoothed NDVI, and NDVImin, 
NDVImax are the absolute five-year minimum and maximum 
NDVI respectively for each pixel. Note that also NDWI-1240, 
NDWI-1640 and NDWI-2130 were tested as an alternative of 
NDVI. 
 
Kogan (1995) developed the Temperature Condition Index 
(TCI). Here we proposed a modified version of TCI (MTCI) for 
the whole period (2): 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)
(𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)   (2) 

 
where LSTi is the smoothed weekly temperature from satellite, 
and LSTmax and LSTmin the multi-year maximum and minimum, 
respectively.  
 
SMCIi was defined similarly to the Soil Moisture Condition 
Index, similar to VCI and MTCI, i.e., a normalization of soil 
moisture values relative to the absolute maximum Surface Soil 
Moisture (SSMmax) and the absolute minimum (SSMmin) of the 
five-year series (3): 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)

(𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚)
    (3) 

 
Finally, the proposed agricultural drought index, SMADI, is 
based on the slope LST/NDVI, but using TCI and VCI instead of 
LST and NDVI, respectively (4), and the SMCI as a 
multiplicative factor. The normalization of these products avoids 
the site- and time-dependence of the series.  
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖+1

   (4) 
 
where i corresponds to a given eight-day period. Note that the 
VCI selected for a given i correspond to the ensuing eight-day 
period, in order to consider the time lag between the plant 
response and the soil moisture conditions. This lag is variable in 
the literature, varying between five to ten days (Li et al., 2014; 
Schnur et al., 2010). Here, a lag of eight days was considered, 
taking into account the time resolution of the MODIS-NDVI 
composite. A total of eight series of SMADI resulted from the 
different combinations of SMOS SMCI, MODIS MTCI 
day/night passes and the four VCIs resulting for the NDVI and 
the three NDWIs.     
 
2.3 Testing at the REMEDHUS area 

REMEDHUS is equipped with 20 soil moisture stations 
measuring at different soil depths, and four automatic weather 
stations. These stations are located within an area of 1300 km2 
(41.1◦ to 41.5◦N; 5.1◦ to 5.7◦W) in a central semiarid sector of 
the Duero basin (Figure 1) in Spain. The topography of this area 
is gentle and the climate is continental semiarid Mediterranean. 
The main land use is rainfed cereals (Sánchez et al., 2012). 
 

 
Figure 1. REMEDHUS area and some datasets included for the 
SMADI calculation. The image background is a MODIS-NDVI 

product in August, 2014. 
 
In order to verify the range and intensity of drought conditions 
depicted with SMADI, comparisons with other agricultural 
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drought indicators were made using the REMEDHUS database. 
The chosen indices are totally independent from the remote 
sensing sources of SMADI. The Soil Water Deficit Index, SWDI 
(Martínez-Fernández et al., 2015) has shown good results to 
characterize the agricultural drought based on soil moisture series 
and basic soil water parameters (water content at field capacity 
and wilting point). For the comparisons, SWDI was calculated at 
eight-day rate at six REMEDHUS stations, and then area-
averaged. Another agricultural drought index, the Crop Moisture 
Index (Palmer, 1968), was calculated based on the mean 
temperature, total precipitation and soil characteristics. While 
CMI needs long climatic series, the closest long-term weather 
station to REMEDHUS (Matacán, from the Spanish 
Meteorological Agency, AEMet) was used, which provided 
climatic series from more than 60 years (Figure 1). The 
assessment of SMADI was performed comparing the temporal 
evolution of each version of SMADI with SWDI at REMEDHUS 
(area-averaged) and with the CMI at the Matacán weather station 
(point-scale), using the Pearson correlation coefficient (R). 
 

3. RESULTS AND DISCUSSION 

3.1 MTCI, VCI and SMCI 

The MTCI cycle showed a strong seasonality (Figure 2) and a 
very similar pattern between day and night passes, slightly 
variable for the night ones mostly during the cold periods. MTCI 
was higher in the summer, coinciding with hot and dry periods. 
There were not clear differences between the five years of study. 
 

 

 
Figure 2. Temporal cycle of MTCI-day (a) and MTCI-night (b). 
 
The four VCI versions (Figure 3) showed slightly differences 
between them, but it could be noticed a clearer seasonal pattern 
and a more stable curve for both the NDVI and NDWI-1640 
versions of the VCI. Comparing the five years, it is difficult to 
track, as also occurred for the MTCI, different behaviours, but 
the VCI seemed slightly higher in 2010 and 2013. Note that the 
MTCI has maximum values during the growing season of the 
rainfed crops, i.e., late winter and spring. 
 

 

 

 

 
Figure 3. Temporal cycle of VCI after the different alternatives 
NDVI (a), NDWI-1240 (b), NDWI-1640 (c) and NDWI-2130 

(d). 
 
The SMCI (Figure 4) showed higher values during the dry 
periods (summer season especially) and it is very influenced by 
the rainfall patterns, as expected. It should be highlighted that the 
SMCI was formulated in (4) as to afford higher values for dry 
conditions. 
 

 
Figure 4. Temporal cycle of SMCI and rainfall evolution in 

REMEDHUS (2010-2015). 
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3.2 SMADI results and comparisons with SWDI and CMI 

SMADI (Figure 5, only the MTCI-day alternative was shown 
owing the similarity of the results with the MTCI-night) showed 
a dynamic range for the area of REMEDHUS from 0 to 0.3. The 
NDVI-derived SMADI shows the highest dynamic range, 
whereas NDWI-1240 and NDW-1640 the lesser (0 to 0.1). It can 
be suspected that these two alternatives lead to unrealistic values 
of SMADI owing their limited range. Indeed, if the annual cycles 
were compared, only NDVI and NDWI-2130 allow 
discriminating which years were the wettest (2010) and the driest 
(2011, 2012 and 2014, especially during the spring and summer). 
These results coincided with the overview of the European and 
Spanish drought observatories for this area and period (Sánchez 
et al., 2016). 
 

 

 

 

 
 

Figure 5. SMADI results at REMEDHUS scale for (a) NDVI, 
(b) NDWI-1240, (c) NDWI-1640 and (d) NDWI-2130 versions. 

Only MTCI-day alternative is shown. 
 

The statistical comparison between SMADI and SWDI afforded 
statistically significant correlations ranging from -0.53 to -0.75 
(Table 1). Note that the negative correlation is due to the different 
description of drought using SWDI (negative values indicate 
drought conditions) and SMADI (positive values indicate 
drought conditions). Figure 6 shows the time evolution of SWDI 

vs. the SMADI-NDVI-LST day alternative (the case of highest 
correlations, similar to Figure 3a). SDWI showed a marked 
seasonality and reveal years 2011 and 2012 as the driest of the 
series. 
 

R SMADI-NDVI SMADI-NDWI-
1240 

SMADI-NDWI-
1640 

SMADI-NDWI-
2130 

 LST-day LST- 
night 

LST-
day 

LST- 
night 

LST-
day 

LST- 
night 

LST-
day 

LST- 
night 

SWDI -0.75 -0.72 -0.57 -0.53 -0.66 -0.60 -0.53 -0.53 
CMI -0.71 -0.69 -0.44 -0.45 -0.33 -0.34 -0.36 -0.39 

Table 1. Pearson coefficient (R) between SWDI, CMI and 
SMADI for the REMEDHUS area average. All the correlations 

have a p-value<0.01. 
 
 

 
Figure 6. Time evolution of SMADI (NDVI and LST day 

version) and SWDI at REMEDHUS. 
 
As for the SWDI, CMI and SMADI showed a significant, inverse 
and good correlation, slightly smaller than for the SDWI, but 
equally showing the NDVI alternative as the best correlated 
(Table 1). The time evolution of CMI (Figure 7) pointed out only 
2011 and 2012 as moderate dry years during the summer (CMI 
below -1). 
 

 
Figure 7. Time evolution of SMADI (NDVI and LST day 

version) and CMI at REMEDHUS. 
 

4. CONCLUSIONS 

The proposed agricultural drought monitoring index SMADI 
merged the soil and temperature conditions while including the 
lagged response of vegetation. SMADI was based on MODIS 
LST and NDVI/NDWI, together with SMOS SSM, all of them 
normalized after the maximum and minimum values across the 
five years of the study. The results of SMADI afforded a good 
agreement with other agricultural indices in the area of 
REMEDHUS in Spain, such as the SWDI and CMI (R=-0.75 and 
-0.71 respectively). The assessment of drought conditions in the 
area along the period of study pointed out years 2011, 2012 and 
2014 as the driest ones in the series, depicting a moderate drought 
during the spring-summer periods. Among the different 
alternatives of calculation, i.e., LST day/night and NDVI/NDWI, 
the NDVI seemed the best choice regarding the use of a 
vegetation proxy, whereas the use of day or night LST product 
provided similar results.  
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Further research should be done on the use of SMADI in other 
different climatic areas, as well as to determine the appropriate 
thresholds to best define drought conditions. 
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