
GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS 
 

 

A.S. Harvey a, *, G. Fotopoulos a 

 
a Queen’s University, Department of Geological Sciences and Geological Engineering, 36 Union Street, Kingston, Ontario, Canada, 

K7L3N6 - (8ash5, gf26)@queensu.ca 

 

Commission VIII, WG VIII/5 

 

 

KEY WORDS: Geology, Geological Mapping, MLA, Random Forest, Spectral Imagery, Rocks 

 

 

ABSTRACT: 

 

Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth 

science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms 

(MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological 

mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to 

conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and 

support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area 

with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent 

of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, 

MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. 

Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance 

may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration 

clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, 

though this increases required computational effort and time. With the achievable performance levels in this study, the technique is 

useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will 

benefit from this approach and lead to the selection of sites for advanced surveys. 

 

 

1.  INTRODUCTION 

 

There are many applications of remotely sensed imagery in Earth 

science applications such as environmental monitoring (Munyati, 

2000), land use (Yuan et al., 2005), and mineral exploration 

(Hewson et al., 2006; Sabins, 1999). Improving exploration 

techniques and lithological identification in remote areas is 

important for improving our understanding of regional geology. 

Remotely sensed data has been shown to be useful for geological 

mapping of alteration minerals and rocktypes (Massironi et al., 

2008; Rowan and Mars, 2003). As the volume and variety of data 

become increasingly available and useful, new obstacles arise, 

namely (1) manual interpretation cannot maintain the pace with 

the amount of incoming data and (2) manual photo interpretation 

is generally subjective and can be inconsistent among 

interpreters, especially with large datasets. This can be true for 

experts as well, as demonstrated in the Bond et al. (2007) study 

of conceptual uncertainty. Machine learning algorithms (MLA) 

are a rapid and more objective approach to photo interpretation 

that automates feature classification for these datasets – a 

commonly used technique in image analysis. 

 

In Cracknell and Reading (2014) the use of MLAs in rocktype 

classification using remote sensed spectral imagery and 

geophysical datasets are assessed. It was found that some MLAs, 

notably random forest, could be used for remote lithology 

mapping. The study area of this paper is focused is Sudbury, 

Ontario. This economically important region is an ideal case 

                                                           
* Corresponding author 

study because it has been reliably mapped geologically over the 

years.  

 

The purpose of this paper is to investigate how the number of 

clusters and training parameters can be optimized to improve the 

performance of an MLA. Four supervised MLAs are considered, 

namely naïve Bayes, k-nearest neighbour, random forest, and 

support vector machines. Naïve Bayes used here is the Gaussian 

naïve Bayes method. The implementation of this method has no 

modifiable input parameter options for optimization as 

population mean and standard deviation are determined by the 

algorithm based on maximum likelihood. k-nearest neighbours 

uses the number of neighbours, or k, as the input parameter. 

Support vector machines (Cortes and Vapnik, 1995) defines class 

boundaries as hyperplanes in a high dimensional variable space. 

The boundary is defined by support vectors, i.e. points from 

calibration data, and is optimally located where the distance 

between the boundary and support vectors of two classes is 

maximized. The variable to be optimized here is a cost parameter 

associated with misclassification of support vectors. Higher costs 

results in more complex boundaries. Finally, random forest 

(Breiman, 2001) can be optimized through the number of decision 

trees or estimators. All MLAs in this study are adapted from the 

Scikit-learn module for Python 2.7 (Pedregosa and Varoquaux, 

2011). 
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2.  BACKGROUND 

 

2.1  Geology of the Sudbury Structure 

 

The structure is located near where the Superior Province, the 

Southern Province, and the Grenville Province meet. Three main 

components make up the geology as follows: 

 

1. The Sudbury Breccia, found throughout the Archean 

basement and surrounding Proterozoic cover. 

2. The Sudbury Basin, which contains the Whitewater 

Group, which is composed of three Formations: (i) the 

Onaping Formation composed by volcanic and 

metasedimentary rocks; (ii) the Onwatin Formation 

composed of laminated mudstone and slate; and (iii) the 

Chelmsford Formation, which is composed of a 

sequence of graded and massive wackes. 

3. The Sudbury Igneous Complex (SIC), which is a 

lopolith structure sitting in the Sudbury Basin that is 

noritic and granophyric in composition. The base of 

this complex is associated with the Ni-Cu-PGE 

sulphide ores that are of economic interest. 

 

The basin is surrounded by migmatized high grade gneisses to the 

north and east, metavolcanic and metasedimentary rocks of the 

Huronian Supergroup to the south, high grade metamorphic 

gneisses of the Grenville Province to the southeast, and felsic 

plutons to the west (Peredery, 1991). The study area can be seen 

in Figure 1 along with major stratigraphy groups and other major 

rock units. A summary of dataset inputs, sources, units, and 

original resolutions is available in Table 1.

 

 
 

Figure 1. Map showing major stratigraphy groups and other major units in the Sudbury region (Ontario Geological Survey, 2011). 

 

 

Feature Source and Filename Units Original Resolution 

Landsat 4-5 TM 

Bands 1-7 

October 2011 

USGS 

LT50190282011278EDC00 

Spectral Response 

16-bit data 
30 m × 30 m 

Digital Elevation Model 

USGS; SRTM 

n46_w081_1arc_v3 

n46_w081_1arc_v3 

 

metres 30 m × 30 m 

Total Magnetic Intensity 
OGS; MNDM ONMAGONL 

from GDS1036 
nanoTelsa 200 m × 200 m 

Bouguer Gravity Anomaly OGS; MNDM ONGRAVTY1 milliGal 1000 m × 1000 m 

Bedrock Geology 
OGS 

Geopoly from MRD126-REV1 
Discrete Geological Units Resampled to study area density 

 

Table 1. Summary of data, features for classification and validation, and class label inputs. Includes source, units, and original 

resolution. 
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3.  METHODOLOGY 

 

3.1  Pre-Processing and Data Sources 

 

Datasets in Table 1 were transformed to refer to a common datum, 

NAD83 and resampled to the resolution of the coarsest dataset, 

1000 m × 1000 m. Spectral imagery of the region of interest was 

obtained from Landsat 4-5 TM datasets available from the USGS. 

The images were taken in October of 2011, with less seasonal 

vegetation cover that could obstruct the imagery. Various band 

ratios were also used as feature inputs for calibration datasets and 

are summarized in Table 2. All the inputs features (i.e. total 

magnetic intensity, elevation, gravity, spectral images) are used 

to create a digital signature for each rocktype using calibration 

data, and used to identify unlabeled points during the 

classification. Rocktypes used to provide labels for calibration, 

classification, and validation datasets were provided by the 

Ontario Geological Survey (OGS) and can be seen in Figure 2 

along with the descriptions and legend in Table 3 (Ontario 

Geological Survey, 2011).

 

Band Ratio Justification 

3/1 Discriminating areas containing ferric iron associated with clays and alteration  (Amen and Blaszczynski, 2001)  

3/2 Discriminating areas containing carbonate rocks associated with clays and alteration (Durning et al., 1998)  

3/5 Distinguish between calcareous sediment and mafic igneous rocks (Boettinger et al., 2008; Mshiu, 2011)  

3/7 Identifying ferrous iron (Amen and Blaszczynkski, 2001)  

5/1 Distinguish between volcanic and metamorphic rocks from sedimentary (Kusky and Ramadan, 2002)  

5/2 Distinguish between calcareous sediment and mafic igneous rocks (Boettinger et al., 2008; Mshiu, 2011)  

5/4 Identifying ferrous iron (Durning et al., 1998)  

5/7 Discriminating areas containing hydroxyl ions associated with clays and alteration (Inzana et al., 2003)  

5/4 * 3/4 Distinguish between volcanic and metamorphic rocks from sedimentary (Kusky and Ramadan, 2002)  

 

Table 2. Landsat 4-5 TM band ratios that are used as input features for the calibration and classification datasets. Justification for each 

ratio is included. Adapted from Cracknell and Reading (2014). 

 

 
 

Figure 2. Rocktype map of the Sudbury Basin and surrounding area. Refer to Table 3 for legend, rocktype descriptions, and 

proportions within the study area (Ontario Geological Survey, 2011). 
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Legend % Cover Rocktype Description 

  0.11 Amphibolite, gabbro, diorite, mafic gneisses 

  0.24 Basaltic and andesitic flows, tuffs and breccias, chert, iron formation, minor metasedimentary and intrusive rocks 

  7.07 Carbonaceous slate 

  0.08 Commonly layered biotite gneisses and migmatites; locally includes quartzofeldspathic gneisses, ortho- and paragneisses 

  0.44 Conglomerate, sandstone, siltstone, argillite 

  0.22 diorite, quartz diorite, minor tonalite, monzonite, granodiorite, syenite and hypabyssal equivalents 

  0.25 Gabbro, anorthosite, ultramafic rocks 

  0.82 Granite, alkali granite, granodiorite, quartz feldspar porphyry; minor related volcanic rocks (1.5 to 1.6 Ga) 

  13.54 Granophyre 

  18.53 Lapilli tuff, breccia, felsic flows and intrusions, minor carbonate and cherty 

  2.72 Mafic, intermediate and felsic metavolcanic rocks, intercalated metasedimentary rocks and epiclastic rocks 

  10.80 Massive to foliated granodiorite to granite 

  0.33 Murray Granite 2388 Ma, Creighton Granite 2333 Ma: granite 

  1.64 Nipissing mafic sills (2219 Ma): mafic sills, mafic dikes and related granophyre 

  0.14 Norite, gabbro, granophyre 

  7.79 Norite-gabbro, quartz norite, sublayer and offset rocks 

  0.24 Quartz sandstone, minor conglomerate, siltstone 

  3.50 Quartz-feldspar sandstone, argillite and conglomerate 

  0.38 Quartz-feldspare sandstone, sandstone with minor siltstone, calcareous siltstone and conglomerate 

  0.85 Rhyolitic, rhyodacitic, dacitic and andesitic flows, tuffs and breccias, chert iron formation, minor metaseds and intrusive rocks 

  0.09 Sandstone, siltstone, conglomerate, limestone, dolostone 

  0.13 Siltstone, argillite, sandstone, conglomerate 

  0.05 Siltstone, argillite, wacke, minor sandstone 

  2.33 Siltstone, wacke, argillite 

  10.70 Tonalite to granodiorite-foliated to gneissic-with minor supracrustal inclusions 

  10.40 Tonalite to granodiorite-foliated to massive 

  6.67 Wacke, minor siltstone 

 

Table 3. Legend and rock type descriptions for Figure 2. Includes % of how much of the study area each rock type covers. Adapted 

from Ontario Geological Survey (2011). 

 

3.2  Model Calibration 

 

The optimal parameters specific to each of the 4 MLAs tested 

were determined through a 10-fold cross validation performed on 

calibration datasets composed of various cluster sizes and spatial 

distributions. The parameter values tested can be seen in Table 4. 

The optimal parameters were used as inputs for the prediction 

evaluation component of this study. The calibration data was 

composed of clusters, which was consistent at 20% of the study 

area data points. Each MLA was run for 2a clusters, where a = 0 

to 9. This process was carried out over three trials for each MLA 

to account for the simple random seeding of clusters. This process 

can result in substantially different compositions of calibration 

points as a result of the seed locations and unequal quantities and 

non-uniform spatial distribution of each rocktype. The results of 

the cross validation for each trial were averaged for the final 

results of the model calibration. In both the calibration and final 

prediction evaluation components, simple random sampling in 

this study is assumed to be more representative of typical 

geological field mapping traverses and procedures than stratified 

sampling (Congalton, 1991). 

 

 

 

 

 

 

 

 

 

 

MLA kNN SVM RF 

Parameter k neighbours cost n estimators 

Values 

Tested 

1 0.25 4 

3 0.5 6 

5 0 8 

7 2 10 

9 4 12 

11 8 14 

13 16 16 

15 32 18 

17 64 20 

19 128 22 

 

Table 4. Parameter and values tested for each MLA during the 

cross validation. The cross validation serves to determine which 

parameter value provides the best performance for each MLA. 
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3.3  Prediction Evaluation 

 

The results for each MLA were assessed through (1) visualization 

of each classification, (2) classification juxtaposed with 

visualizations of correctly and incorrectly identified data points 

and cluster locations, and (3) overall performance assessment by 

percentage of correctly identified pixels. The purpose was to 

determine which MLA and under what conditions performs the 

best. 

 

4.  RESULTS 

 

4.1  Cross Validation Results 

 

Figure 3 shows the results of the cross validation performed to 

determined optimal parameters to use in the prediction evaluation 

component of the study. The red dots in the figure show the best 

performance for each number of clusters for each MLA. The cross 

validation accuracies of all the MLAs show similar trends among 

each other as the number of clusters change, showing slightly 

better performance at the extremes of clusters and a trough 

centred around 16 to 64 clusters. Table 5 summarizes the 

performance for the best performing parameters for each MLA 

and corresponding clusters. Performance refers to percent of 

correctly identified pixels. The performance is poor, with best 

performance at 76%. This may be the result of a few factors. One 

large factor is likely the amount of vegetation coverage which 

hinders rock classification (see Cracknell and Reading, 2014 for 

geological mapping in a more suitable environment). Another 

factor here is that water bodies are not accounted for. 

 

 
Figure 3. Comparison of the mean accuracies over three trials, 

i.e. varied calibration cluster locations, of the cross validation 

for each MLA as functions of the number of clusters and 

parameter values to be tested as specified in Table 4. Red dots 

indicate best performance and parameter value that resulted in 

the values used in the prediction evaluation, which are 

summarized in Table 5.

 

# Clusters 
Naïve Bayes k Nearest Neighbour Support Vector Machines Random Forest 

Performance k(neighbours) Performance Cost Performance n-Estimators Performance 

1 54% 11 64% 4 65% 16 76% 

2 51% 9 56% 8 61% 22 72% 

4 57% 7 48% 2 55% 16 70% 

8 49% 7 48% 2 54% 20 61% 

16 37% 11 47% 2 37% 16 52% 

32 43% 5 42% 1 42% 22 50% 

64 41% 9 42% 0.5 43% 20 54% 

128 42% 15 43% 0.5 47% 22 56% 

256 42% 9 48% 0.5 51% 22 63% 

512 43% 17 50% 2 52% 22 66% 

 

 

Table 5. Accuracies for best performing parameter for each MLA and number of clusters from the cross validation. Best performance 

among clusters with corresponding parameter value for each MLA is highlighted in red. 

 

4.2  Study Area Prediction Evaluation Results 

 

Figure 4 shows the predictions and spatial distributions of 

correctly identified data points of the prediction evaluation 

component of the study for 1 and 512 clusters. The coloured 

images depict the MLA rocktype prediction results, and the 

adjacent image shows correctly identified (grey) and incorrectly 

identified (black) data points. Clusters are in both images as 

lightly coloured groups of data points. Refer to Figure 2 and Table 

4 for validation map and legend. These images show that as the 

number of calibration clusters increases, (1) major structural and 

lithological trends, or contacts, become more distinct, and that (2) 

correct identification of rocktypes increases with a greater 

number of calibration clusters and distribution. 
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Figure 4. Visualizations of rocktype predictions, cluster distributions, and correctly identified data points for each MLA. Clusters = 1 

and 512 are shown. The coloured image shows rocktype predictions with calibration pixels in lighter legend colours. Adjacent are 

performance visualization images, where calibration pixels (light legend colours), correctly identified cells (grey) and incorrectly 

identified cells (black) can be seen. Refer to Figure 2 for the full rocktype map and Table 3 for the legend. 

 

Figure 5 summarizes the overall performance of each 

classification, showing that performance for each MLA generally 

increases as the number of calibration clusters increases. Lin-log 

plot regression trend lines are included, as well as R2 values for 

each MLA. Naïve Bayes shows the poorest performance 

generally. Naïve Bayes and k-nearest neighbour performed 

similarly with regards to the relationship between performance 

and number of clusters, however naïve Bayes fits the data the 

poorest of the four MLAs. Random forest overall produced the 

best results, steepest trend line, and best fitting data. 

 

 

 
Figure 5. Overall performance (percentage of correctly identified pixels) for each MLA for an increasing number of clusters. 
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5.  DISCUSSION 

 

Generally results indicate that this is not a reliable technique for 

mapping lithology in regions that are heavily vegetated and have 

water coverage. Possibilities to mitigate these factors are to apply 

this technique in areas that have low vegetation, or weight inputs 

that rely on spectral response to be reduced. Another possibility 

is to group units that are similar in composition. This study 

considered rocktypes provided from the source material directly, 

however some units could reasonably be grouped together for this 

application. Rocktypes with similar composition and digital 

signatures may have been confused with one another resulting in 

reduced performance.  

 

Increasing the number of clusters for calibration actualizes as an 

increased distribution of calibration points across the study area. 

A more uniform spatial distribution of calibration clusters 

increases the likelihood that all rocktypes are included in the 

calibration phase of the classification procedure. Additionally, 

this is more representative of non-preferential sampling, which 

can reduced biased inferences in interpretation (Diggle et al., 

2010). 

 

During the 10-fold cross validation, extremes for number of 

clusters (i.e. low and high) tested showed slightly better results. 

A low number of clusters could result in better performance in 

this case as the calibration points area all located in the same 

region spatially. These data are spatially constrained to an area 

that could reasonably have similar properties across it. A large 

calibration cluster could results in enough data within the same 

area to establish a distinct digital signature during the calibration 

phase of classification due to wide covered in a spatially 

constrained location. The trough in performance during the cross 

validation may be from the calibration clusters moving away from 

these spatially constrained area to being less spatially defined. 

However, as number of clusters increases to 512, there is wider 

spatial coverage across the entire study area, presenting a 

circumstance once again where a wide portion of the study area 

is covered and spatial coordinates are valuable as feature inputs 

for classification. 

 

During the prediction evaluation across the entire study area, 

MLA predictions improve as the number of clusters increase (lin-

log scale). This follows similar logic to the improving 

performance for the higher number of clusters during the cross 

validation, however fewer calibration clusters for the entire 

dataset results in poorer performance, which differs from the 

cross validation. In the cross validation, only the rocktypes in the 

calibration data region were considered. Fewer clusters for the 

entire study area result in limited, and sometimes zero, access to 

each rocktype. If a labelled rocktype is not available during the 

calibration phase, the MLA will not be able to assign the correct 

class label during the classification phase. The assertion that 

performance improves with a greater number of clusters can be 

observed in the prediction and error location maps (Figure 4). The 

performances are best summarized by the overall accuracy, 

Figure 5, which shows naïve Bayes as the poorest performing 

MLA and random forest as the best. Random forest here shows 

the most promise in this application, however it can be subject to 

over-fitting (Cracknell and Reading, 2014). This could explain 

why n estimators = 4 to 14 do not show up as candidates for best 

performance in the random forest cross validation. 

 

 

6.  CONCLUSIONS 

  

The use of other geophysical data, specifically total magnetic 

intensity, digital elevation, and Bouguer gravity anomaly, as 

input classification features was found to be useful for “first-pass” 

assessments and interpretation of geological rocktypes. 

Typically, prior to a field visit, a geologist will recover all known 

geological information about a site. This allows for delineating 

regions of interest and structural trends that may exist in the area. 

This includes possible contacts among rock units, which are often 

hidden under surface material (e.g. vegetation, soil) and inferred 

through interpretations from outcrop to outcrop. A geologist in 

the field will map rock outcroppings and must know what to look 

for, including structural and contact trends. The assertions of this 

study support previous studies that random forest is the best 

performing MLA for this application. However, it was found that 

due to the considerably low performance of even the best MLA, 

this approach cannot be used to replace proper site investigation 

for geological mapping and ground validation. It can however, be 

used at the desktop study (phase I site investigation) state in order 

to plan effective field traverses that could enhance geological 

interpretations. 
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