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ABSTRACT: 
 
Spectral unmixing of hyperspectral data often fails to select some minerals and rocks having flat spectra but no diagnostic absorption 
features as endmembers, even if they are actually important endmembers. To avoid this problem, we propose a novel approach that 
combined two methods: spectral unmixing and full-pixel classification. First, all pixels were divided into two categories, 
hydrothermally altered areas and unaltered rocks based on the absorption depth of 2.0 to 2.5 µm. For the hydrothermally altered areas, 
endmembers were extracted by the Improved Causal Random Pixel Purity Index (ICRPPI) method, which was improved from the 
existing Pixel Purity Index (PPI) and Causal Random Pixel Purity Index (CRPPI) methods. Endmember abundance in each pixel was 
calculated by linear spectral unmixing. In a separate operation, k-means clustering was applied to the unaltered rock areas. Finally, 
the results of these two methods were combined to generate a single distribution map of rocks and minerals. This approach was 
applied to the airborne hyperspectral HyMap data of Cuprite, Nevada, U.S.A. We confirmed that our mapping result was consistent 
with the existing geological map as well as our field survey result. 
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1. INTRODUCTION 

The spectral signature from minerals/rocks on the ground is 
useful for geological mapping. Recently, hyperspectral sensors 
have drawn attention because of their capability to capture 
detailed spectra of surface materials and thus to identify 
materials and measure their abundances on the ground. 
However, the spectral signature from each pixel contains a 
mixture of different spectra due to the multiple components that 
form the ground surface. This complexity causes incorrect 
identification and/or misclassification of surface materials. For 
this reason, it is important to solve this mixing problem in the 
analysis of hyperspectral data. 

Spectral unmixing has been widely studied in hyperspectral data 
analysis as a possible solution to the mixing problem. Unmixing 
consists of two steps: 1) extracting characteristic constituent 
spectra named “endmembers” from image data, 2) calculating 
their abundances per pixel (Keshava and Mustrad, 2002). In 
general, endmembers are identified as pixels that have 
characteristic spectra with diagnostic absorption features. 
However, some minerals and rocks (e.g., basalt) have flat 
spectra without any characteristic absorption, and such a 
material would never be selected as an endmember, even if it is 
actually an important constituent. As a result, the unintended 
omission of endmembers often causes incorrect identification 
and surface mapping results. In this case, we can apply a full-
pixel classification method such as clustering analysis instead of 
the unmixing approach. However, only a few studies have 
attempted to combine mixed-pixel classification (spectral 
unmixing) and full-pixel classification (Dopido et al., 2011).  
 
In this study, we propose an approach to combine these two 
methods, spectral unmixing and k-means clustering analysis, for 

accurate geological mapping. As mentioned above, it is often 
difficult to extract a mineral endmember without characteristic 
absorption and/or to select a true endmember set from candidate 
endmembers in the first step of spectral unmixing. Therefore, 
we developed the Improved Causal Random Pixel Purity Index 
(ICRPPI) by improving the existing method, the Causal 
Random Pixel Purity Index (CRPPI) (Wu and Chang, 2009), 
which was modified from the Pixel Purity Index (PPI). In this 
paper, we adopt the ICRPPI method for unmixing of mixed 
pixels. 
 

2. METHODS 

We focused on the hydrothermal alteration of minerals/rocks, 
which is an important target in mineral exploration. Generally 
speaking, spectral unmixing is useful for discrimination and 
mapping of minerals and rocks with characteristic absorption 
features, whereas full-pixel classification is more suitable for 
geological mapping of rock formations without characteristic 
absorption features. Thus, we first classified the hyperspectral 
pixel data of the target area into two categories: hydrothermal 
alteration areas composed of minerals/rocks with characteristic 
absorptions and unaltered rocks without characteristic 
absorptions. Separate approaches of spectral unmixing and k-
means clustering were applied to each classified area. 
 
2.1 Classification into Hydrothermal Alteration Areas and 
Unaltered Rocks 

Hydrothermally altered minerals/rocks have spectral 
absorptions around 2.2 µm because of hydroxyl (Hunt, 1974), 
whereas unaltered rocks show a flat reflectance spectrum in this 
wavelength region. We normalized the reflectance spectra from 
2.0 to 2.5 µm to enhance the absorption features in each 
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spectrum of a pixel and classified the pixels into hydrothermal 
alteration areas and unaltered rocks. 
 
To normalize the reflectance spectra, we used the continuum 
removal method (Clark and Rough, 1984). This method 
generates a continuum-removed reflectance spectrum by 
dividing a reflectance value R by a continuum line value 
(convex hull) (Noomen et al., 2006). That is, 
 

                      

                                                            (1) 

 
where R' is the continuum-removed reflectance spectrum 
(normalized spectrum), R is the original reflectance spectrum, 
and Rc is the continuum. After normalization, R' values from 
2.0 to 2.5 µm were averaged for each pixel to obtain an average 
reflectance value of each pixel. When R has no absorption, Rc is 
equal to R in all spectral bands, and R' represents 1. Conversely, 
when R has characteristic absorption features, Rc is not equal to 
R at these spectral bands, and R' is less than 1. Hence, the pixels 
whose averaged R' value is higher than a threshold value were 
regarded as unaltered rocks, and the other pixels were 
categorized as hydrothermally altered areas. The threshold value 
was defined from the R' histogram of the target scene. 
 
2.2 K-means Clustering for Unaltered Rocks 

Unaltered rocks have no diagnostic absorption features but their 
brightness changes. For example, basalt has a flat spectrum with 
low reflectance (brightness), whereas andesite and rhyolite have 
flat spectra with higher reflectance (brightness). For this reason, 
brightness is more useful than spectral shape for classifying the 
pixels of unaltered rocks. 
 
As a classification method, we chose k-means clustering 
(MacQueen, 1967), which is one of the most popular 
unsupervised classification methods for remote sensing data. 
This algorithm randomly distributes representative points of k 
classes in N-dimensional space. Each spectrum in each pixel is 
assigned to the class whose representative point is the closest to 
each pixel (Dopido et al., 2011). The average spectrum of each 
class is considered to be the centroid of each cluster. Then, all 
pixels are reassigned to the class whose centroid is the closest to 
the pixel spectrum, and the centroids are recalculated 
(Schowengerbt, 1997). The k-means clustering continues this 
iteration until the pixel assignment becomes invariable from the 
previous assignment. When k-means clustering processes a 
dataset of flat spectra, the result depends on spectral brightness. 
In this case, we assumed that the pixels in the same cluster 
belonged to the same rock formation.  
 
However, it is difficult to identify rock types solely from their 
reflectance spectra after classification because of the lack of 
diagnostic absorption features. Therefore, in this study, each 
unaltered rock class was regarded as one rock type representing 
one geological unit. 
 
2.3 Spectral Unmixing for Hydrothermal Alteration Areas 

The Pixel Purity Index (PPI) method, widely used for 
endmember extraction, is based on the geometry of convex sets 
(Ifarraguerri and Chang, 1999). This method considers spectral 
signatures as vectors in N-dimensional space and extracts the 
edges of convex sets as candidate endmembers (Plaza et al., 
2002). First, the PPI algorithm randomly generates a large 
number of N-dimensional vectors called “skewers” and adds 

one point to the extracted extreme vector per skewer. After 
several skewer operations, the spectral pixel vectors whose PPI 
counts are larger than a threshold value are assumed to be 
candidate endmembers. The Causal Random PPI (CRPPI) 
method is a modification of PPI (Wu and Chang, 2009). This 
method repeats PPI with fewer skewers than those in the 
original PPI, compares the extracted pixels, and retains the 
common candidate endmembers as renewed candidates. 
 
We developed the Improved Causal Random Pixel Purity Index 
(ICRPPI) method, which is a further modification of the CRPPI, 
in order to extract even spectra with weak absorptions 
(Ishidoshiro et al., 2013). ICRPPI has two operation features: 
extracting a union of candidates, not an intersection as CRPPI 
does, and grouping endmembers into commonly existing 
materials, such as alunite and kaolinite.  
 
The ICRPPI algorithm starts by generating fewer skewers, as in 
CRPPI. The major difference between these two methods is that 
ICRPPI extracts the union of candidate vectors selected as 
extreme vectors at least twice, instead of the intersection of 
candidates. The reason why this method excludes candidates 
selected only once is that those might correspond to pixels 
projected onto the extremes by chance due to randomly 
generated skewers.  
 
In the next step, endmember candidates are classified into 
material groups based on a threshold value. In particular, this 
operation needs to satisfy two conditions in order to collect 
pixel vectors into the same group: 1) the spectral angle φ 
between two candidate vectors is smaller than a threshold value, 
and 2) the spatial distance (Euclidean distance) D between two 
candidate vectors is smaller than a threshold value. Under these 
conditions, φ and D are expressed as, 
 

                    

                                                (2) 

 
 

           
                                   (3) 

 
where C1 and C2 are the spectral vectors of the endmember 
candidates, and (i, j) and (i', j') are the coordinates of two pixels. 
The spectral angle threshold φ' is calculated according to the 
following equation and the spatial distance threshold D' is 
defined empirically. Here, φ' is expressed as, 
 

                     
                                                        (4) 

 
where φmin is the minimum spectral angle between minerals in a 
scene. 
 
In the final step, after grouping, a representative endmember 
from each group is extracted from the selected endmember 
candidates. These representative vectors are treated as 
endmember vectors. 
 
After extracting endmember sets, we employ conventional 
linear spectral unmixing to generate the mineral distribution 
map, which shows the abundance of each mineral (Plaza et al., 
2011). This spectral unmixing result for hydrothermal alteration 
areas is later combined with the k-means clustering result for 
unaltered rocks. 
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3. STUDY AREA AND DATA 

The study area is located in Cuprite in western Nevada, U.S.A. 
Cuprite is one of the most popular sites for testing the 
performance of new sensors and spectral mapping methods in 
geologic remote sensing studies (e.g., Abrams et al., 1977; 
Ashley and Abrams, 1980; Swayze et al., 2014). In this area, the 
Tertiary volcanic rocks were hydrothermally altered in the Mid- 
to Late-Miocene epoch. The hydrothermally altered rocks were 
divided into three groups: silicified rocks, opalized rocks and 
argillized rocks, as shown in Figure 1 (Ashley and Abrams, 
1980). 
 
We used the hyperspectral data obtained in October 1999 by 
Hyperspectral Mapper (HyMap), an airborne hyperspectral 
sensor developed in Australia. The HyMap sensor consists of 
126 spectral bands in a span of 0.45 to 2.48 µm. HyMap can 
obtain a continuous spectrum except in absorption ranges near 
1.4 and 1.9 µm due to atmospheric water vapour (Cocks et al., 
1998). The spatial resolution is 2 to 10 m. 
 

 
 

Figure 1. Alteration map of Cuprite, Nevada (Hook and Rast, 
1990) redrawn from Ashley and Abrams (1980). 

 

 
4. RESULTS 

The classification result of the hydrothermal alteration areas and 
unaltered rocks is shown in Figure 2. The distribution of the 
hydrothermal alteration areas by our method is consistent with 
the hydrothermally altered zone in the existing map except for 
the silicified zone in Figure 1 (Hook and Rast, 1990). The 
silicified zone was misclassified into unaltered areas because 
the silicified rocks had no or weak diagnostic absorptions from 
2.0 to 2.5 µm.  
 

 
 
Figure 2. Distribution of hydrothermal alteration areas (green) 

and unaltered rocks (yellow). 

 

The number of classes, which was necessary and important 
input for k-means clustering, was determined as 10, based on 
the number of geologic formations in the existing geological 
map (Workman et al., 2002). Figure 3 shows the result of k-
means clustering. The distribution of major rock units was 
consistent with the existing geological map. We also confirmed 
the extent of the rock formations by a field survey in September 
2014. As an example, the clustering result clearly showed the 
characteristic lithologic pattern formed by the dip slopes in the 
northeastern part of the eastern hill of Cuprite 
 
By using the ICRPPI method, a total of 15 endmembers were 
extracted from the HyMap dataset, and eight endmembers were 
excluded due to noise. Among the 15 endmembers, 13 
endmembers indicated spectra similar to pure mineral spectra. 
These endmembers were judged to contain alunite, kaolinite, 
montmorillonite, and buddingtonite. As a result of spectral 
unmixing by using these four representative mineral 
endmembers, high abundance spots of hydrothermally altered 
minerals were identified, as shown in Figure 4. The mineral 
distributions shown on these images corresponded well with the 
existing clay mineral maps (Swayze et al., 2014). 
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Figure 3. Result of k-means clustering for unaltered rocks. 

 

 

 

 
 
Figure 4. Alteration mineral distributions. Red and blue colours 

indicate high and low abundances respectively. Upper left: 
alunite, upper right: kaolinite, lower left: buddingtonite, lower 

right: montmorillonite. 

 
 

We conducted field surveys in September 2013 and September 
2014, and measured the spectral reflectance of the collected 
rock samples in our laboratory. The spectra of endmember 
pixels extracted by spectral unmixing were similar to those of 
the rock samples, and both spectra showed the existence of the 
same hydrothermal alteration minerals. This result indicates that 
spectral unmixing with the ICRPPI method worked properly. 
However, we must acknowledge that the abundance of each 
mineral was still not sufficiently accurate, and so we need 
further modification of the methodologies. 
 
Finally, the two results of k-means clustering and spectral 
unmixing were combined to generate one distribution map of 
rocks and minerals. In this study, because of the importance of 
mineral exploration, we paid more attention to the hydrothermal 
alteration areas, which were analyzed by spectral unmixing. 
Therefore, we generated an RGB colour composite image of the 
hydrothermally altered minerals (R: alunite, G: kaolinite, B: 
montmorillonite), and combined the composite image with a 
monochrome image of the unaltered rock distribution (Figure 5). 
 
The distribution map of rocks and minerals generated by the 
proposed method allowed us to obtain detailed information of 
both the hydrothermal alteration minerals and the unaltered rock 
formations. Moreover, the clustering result was consistent with 
the geological map in terms of the distribution of geological 
formations. 
 
 
 

 
 

Figure 5. Combined result of distribution map of rocks and 
minerals. The colour composite image was generated by 

assigning R to alunite, G to kaolinite, and B to montmorillonite 
abundances. The monochrome image was the k-means 

clustering result for unaltered rocks. 
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5. CONCLUSION 

Most of the previous approaches for hyperspectral data analysis 
have been based on spectral unmixing, which focuses on the 
characteristic absorptions of reflectance spectra. For this reason, 
it has been difficult to generate a geological map for unaltered 
rocks that have no characteristic absorptions. In this study, we 
propose a novel approach consisting of two separate methods 
and the following four steps: 1) data division into 
hydrothermally altered areas and unaltered rocks in order to 
apply a suitable method for each area, 2) clustering analysis for 
unaltered rocks, 3) spectral unmixing for hydrothermally altered 
areas, and 4) finally, combining the two results to generate a 
single distribution map of rocks and minerals. 
 
We conclude that the combination of spectral unmixing for 
hydrothermal alteration areas and k-means clustering for 
unaltered rocks is a realistic approach to learn the accurate 
distributions of rocks and minerals. 
 
When we analyze high-spatial-resolution data such as HyMap 
data, the proposed method allows us to obtain detailed 
information of both the hydrothermal alteration minerals and 
unaltered rock formations. However, in the data division step, a 
remaining problem is that the silicified zone is classified as 
unaltered rocks because their spectra have no or weak 
diagnostic absorptions from 2.0 to 2.5 µm. This problem may be 
solved by using the thermal infrared data. This is one of the 
future issues in the data division step. 
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