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ABSTRACT: 

 

LiDAR full-waveform provides a better description of the physical and forest vertical structure properties than discrete LiDAR since 

it registers the full wave that interacts with the canopy. In this paper, the effect of flight line side-lap is analysed on forest structure 

and canopy fuel variables estimations. Differences are related to pulse density changes between flight stripe side-lap areas, varying 

the point density between 2.65 m-2 and 33.77 m-2 in our study area. These differences modify metrics extracted from data and 

therefore variable values estimated from these metrics such as forest stand variables. 

In order to assess this effect, 64 pairwise samples were selected in adjacent areas with similar canopy structure, but having different 

point densities. Two parameters were tested and evaluated to minimise this effect: voxel size and voxel value assignation testing 

maximum, mean, median, mode, percentiles 90 and 95. 

Student’s t-test or Wilcoxon test were used for the comparison of paired samples. Moreover, the absolute value of standardised 

paired samples was calculated to quantify dissimilarities. It was concluded that optimizing voxel size and voxel value assignation 

minimised the effect of point density variations and homogenised full-waveform metrics. Height/median ratio (HTMR) and Vertical 

distribution ratio (VDR) had the lowest variability between different densities, and Return waveform energy (RWE) reached the best 

improvement with respect to initial data, being the difference between standardised paired samples 1.28 before and 0.69 after 

modification. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

 

Forest stand variable mapping is an important tool for forest 

management (Franco-Lopez et al., 2001), allowing forest fuels 

stratification, carbon balance modelling, manage cleaning and 

sustainable maintenance of the mountains, and forest fire 

prevention (Temesgen et al., 2015). 

 

Whereas imagery has been widely used for tree species 

classification, it is not adequate to estimate structural forest 

parameters (Buddenbaum et al., 2012). However, Light 

Detection and Ranging (LiDAR) can penetrate through the 

canopy to obtain a complete vertical forest structure description 

(Zimble et al., 2003; Erdody and Moskal, 2010). Several 

studies have shown correlation between LiDAR data and forest 

stand variables, being estimated using field data and different 

regression models (Means et al., 2000; Naesset, 2002; 

Temesgen et al., 2015). Nevertheless, discrete LiDAR has 

limitations to extract different vegetation layers. LiDAR full-

waveform provides a better description of the forest vertical 

structure and physical features than discrete LiDAR, being the 

full wave registered, and therefore obtaining better results for 

forest stand variable estimations (Lefsky et al., 1999; Means et 

al., 2000). 

LiDAR point density is not constant along the flown area 

because of canopy density and flight lines overlapping. A 

LiDAR full-waveform methodological problem consists that 

during voxelisation it is more likely that voxels located in lower 

density areas have less returns than those placed in higher 

density areas (Crespo-Peremarch et al., 2015). These 

differences make that pulses going through similar canopies 

generate different waveforms and metrics extracted from these 

waveforms. Therefore, forest stand variables estimated using 

full-waveform metrics as explanatory variables in regression 

models also show a flight stripe side-lap effect. 

 

In order to solve these point density variations, some strategies 

have to be carried out. Wang and Glennie (2015) mentioned the 

importance of an appropriate voxel size selection taking into 

consideration LiDAR sensor resolution; and Wang et al. (2013) 

proposed a voxel value calculation according to its inverse 

distance from the voxel centre. Buddenbaum et al. (2012) 

assigned the mean value of all the points inside the voxel 

instead of assigning the maximum value. 

 

The goal of this paper is to evaluate the effect that the voxel size 

and voxel value assignation method have in the reduction of 

differences of LiDAR full-waveform metric values in areas with 
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different point densities due to the presence of overlapped 

stripes during the data acquisition process. In order to prove 

statistically these dissimilarities, Student’s t-test and Wilcoxon 

test were carried out, and absolute value of differences of 

standardised metrics between different point density areas were 

calculated. Regression models to estimate forest structure and 

canopy fuel variables using LiDAR full-waveform metrics as 

explanatory variables were generated with the testing set, trying 

to homogenise LiDAR full-waveform metrics. Finally, some 

conclusions about these test were obtained. 

 

 

2. STUDY AREA AND DATA 

 

The study area is located in Panther Creek, Oregon (USA) (see 

Figure 1a). Elevation ranges from 100 to 700 m. The dominant 

species is Douglas-fir (Pseudotsuga menziesii), being present in 

more than half of the total forest area, occasionally mixed with 

other conifers. The height of the trees of the study area is 

sometimes higher than 60 m, although it is very variable due to 

timber production in the zone. 

 

 
Figure 1. Study area: (a) location, (b) paired samples location, 

(c) field data plot locations, and (d) example of paired sample 

polygons with different point densities due to overlapping 

 

Full-waveform data were collected in July 15th 2010 by 

Watershed Sciences, Inc. using a Leica ALS60 sensor on-board 

a Cessna Caravan 208B. The system acquired data at 105 kHz 

pulse rate, an average altitude of 900 m above ground level, and 

a scanning angle of ±15º from nadir. The waveforms were 

recorded in 256 bins with a temporal sample spacing of 2 ns 

and beam footprint size of ~0.25 m, what yielded a pulse 

density of ≥ 8 m-2. The study area was surveyed with opposing 

flight line side-lap ≥ 50% (≥ 100% total overlap). Aircraft 

position was recorded with a frequency of 2 Hz by on-board 

differential GPS unit, altitude was acquired with a frequency of 

200 Hz as pitch, roll and yaw from on-board IMU. LiDAR data 

were provided in LAS 1.3 format. Moreover, the company 

provided a digital terrain model (DTM) generated from the last 

return pulses. The accuracy of the DTM was analysed 

measuring 33 ground control points with GPS Real Time 

Kinematic (RTK) technique obtaining a RMSE value of 0.19 m. 

 

A total of 64 pairwise samples covering all the study area were 

located depending on density variations identified (see Figure 

1b). Each pair includes a sample measured in a high density 

area, affected by flight line effect, and another adjacent sample 

with similar features but with a lower point density and not 

being affected by the abovementioned effect (see Figure 1d and 

2). The area of each sample was 880 m2 similar in size to the 

field data plots available. Polygon average values of each 

LiDAR full-waveform metric were extracted so as to study 

dissimilarities between pairwise samples. 

 

 
Figure 2. Flight stripe side-lap effect detected in (a) Return 

Waveform Energy (sum of waveform intensities) metric and (b) 

LiDAR point cloud with variable density 

 

In order to estimate structure and canopy fuel load variables, 

field data were available from 78 circular plots with 16 m radius 

(see plot distribution in Figure 1c). Plot positions were located 

with accuracy lower than 0.3 m in horizontal and vertical 

locations using Trimble R-8 GNSS and Leica TPS 800 total 

stations. All trees within plots having a diameter at breast height 

(DBH) greater or equal than 2.5 cm were measured. 

Estimation of forest stand variables were calculated from field 

data and allometric equations described by Standish et al. 

(1985) (Hermosilla et al., 2014). These variables were used in 

regression models as dependent variables (see Table 1).  

 

 

3. METHODS 

 

3.1 Variable description 

Eight LiDAR full-waveform metrics were extracted following 

those proposed by Duong (2010) and further described by Cao 

et al. (2014), and used as independent variables in regression 

models (Crespo-Peremarch et al., 2016): Height of median 

energy (HOME), Waveform distance (WD), Number of peaks 

(NP), Roughness of outermost canopy (ROUGH), 

Height/median ratio (HTMR), Vertical distribution ratio 

(VDR), Return of waveform energy (RWE) and Front slope 

angle (FS). Nine forest structure and canopy fuel variables were 

employed as dependent variables in regression models (see 

Table 1). 

 

3.2 Data modifications 

Two parameters were tested and evaluated in order to minimise 

the effect due to pulse density changes between flight stripe 

side-lap areas: voxel size and voxel value assignation. 

 

A correct voxel size is essential. Its dimension is related to 

LiDAR density and, in case of working with imagery, to the 

spatial resolution as well (Wang and Glennie, 2015). In our 

case, initial voxel size was (0.25 x 0.25 x 0.3 m), being 0.25 m 

the beam footprint size and 0.3 the distance travelled by a pulse 

in 2 ns, that is the temporal sample spacing. Low density areas 

are more likely to have empty voxels than high density areas, 

therefore some LiDAR full-waveform metrics may be affected  
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Code (unit) Variable Description Mean Std.Dev. 

     

AGB (t.ha-1) Aboveground biomass Weight of all the living biomass aboveground per area unit  309.57 202.23 

BA (m2.ha-1) Basal area Area occupied by tree trunks per area unit 46.14 22.62 

QMD (m) Quadratic mean diameter Quadratic mean diameter at breast height 0.33 0.13 

SDI Stand density index Stand measure relating tree density per area unit and QMD 286.15 115.87 

V (m3) Volume Volume of canopy 362.89 174.39 

CH (m) Canopy height Height from the ground to a forest stand’s canopy top 23.15 8.97 

CBH (m) Canopy base height Height from the ground to a forest stand’s canopy bottom 13.75 7.35 

CBD (kg.m-3) Canopy bulk density Ratio between canopy fuel load and canopy depth 0.136 0.086 

CFL (t.ha-1) Canopy fuel load Total amount of biomass in the canopy fuel layer per area unit  48.49 23.51 

Table 1. Summary of forest structure and canopy fuel variables 

 

as well, having different metrics in adjacent areas with similar 

features (see Figure 3). In order to reduce this problem, 

different voxel sizes were tested in the X and Y dimensions: 

0.5, 1 and 2 m. Voxel size in the Z-axis was not modified, since 

it would have reduced the number of bins of the waveform and, 

subsequently, its accuracy. 

 

 
Figure 3. Schematic representation of waveform variability 

related to point density and maximum value within voxels: (a) 

higher density and (b) lower density. 

 

The second parameter tested was the criteria to assign the voxel 

values. Previous studies selected the maximum amplitude of all 

the waveforms within the voxel (Hermosilla et al., 2014). 

However, the maximum value increases the probability of 

having higher voxel values in those areas with higher point 

densities, biasing the results and increasing the differences. In 

order to avoid this problem, mean, median, mode, percentiles 

90 and 95 of the points that are inside the voxel were tested 

beside maximum. Combination of both parameters was carried 

out, testing voxel size modification and criteria to voxel value 

assignation, thus having 192 different testing sets (8 variables x 

4 voxel sizes x 6 value assignations). 

 

3.3 Statistical tests and variable standardisation  

Two different statistical tests were employed depending on 

residual errors distribution and equality of variances (Student’s 

t-test – Wilcoxon test), to assess statistically significant 

differences between LiDAR full-waveform metrics measured in 

low and high density areas. Additionally the difference between 

paired samples using standardised variables was quantified (see 

Figure 4). 

 
Figure 4. Flowchart of the overall process followed to assess 

and quantify dissimilarities between pairwise samples. 

 

Test selection depended on distribution of residual errors and 

equality of variances hypothesis verifications (see Figure 4). In 

order to assess if the residual errors follow a normal 

distribution, being in our case the difference between paired 

samples measured in flight stripe side-lap and not flight line 

areas, Shapiro-Wilk W test (Shapiro and Wilk, 1965) was used. 

F-test (Box, 1953) was employed to assess equality of the 

variances. For normal distributed and equality of variances 

cases, a paired Student’s t-test (Gosset, 1908) was employed, 

which verifies whether the average of differences between 

paired samples is significantly different from zero (Demšar, 

2006). In other cases, Wilcoxon signed-rank test (Wilcoxon, 

1945) was used, that compares two samples to assess if 

dissimilarities between them are significant or not. This test 

ranks absolute values of differences between paired samples, 

and compares the ranks for the negative and positive differences 

separately, being not significantly different when negative and 

positive ranks are similar (Demšar, 2006). 

 

Student’s t-test or Wilcoxon signed-rank test were employed in 

the 192 testing samples abovementioned. Test results just 

assessed whether differences were significant or not, but they 

were not quantified. Therefore, it was no possible to 

demonstrate that voxel size and criteria to voxel value 

assignation improved the results. For this purpose, differences 

between paired samples in high and low density areas were 

calculated so as to check if these values decreased (see Figure 
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4). 

 

Each LiDAR full-waveform metric has different units, and mean 

values vary from 0.136 to 361.9 in our study area. In order to 

compare all the variables, a variable standardisation was 

applied, using: 

 

 

(1) 

 

 

where    = average of 64 paired samples in the testing set 

number k (k ϵ {1,…,192}) 

 xk,i,l = value of the testing set k for the sample i and 

density area l 

 k = indicator number of the testing set 

 i = indicator number of the paired sample 

 l = indicator number of the density area (higher or 

lower point density area) 

 

 

(2) 

 

 

where   σk
2 = variance of the testing set k of 64 paired samples 

 

 

(3) 

 

where   zk,i,l = standardised value for the testing set k and 

sample i and density area l 

 

After variable standardisation, absolute value of differences 

between paired standardised samples was obtained, and 

afterwards the average of these differences was calculated for 

each testing variation: 

 

 

(4) 

 

 

where   Dk = average of the absolute value of differences 

between paired standardised samples 

 

This average identifies and quantifies the existence of 

differences in the statistical abovementioned, and it was used to 

check whether voxel size and voxel value assignation changes 

decreased variable dissimilarities due to pulse density changes 

between flight stripe side-lap areas. 

 

3.4 Regression models 

Estimation of structure and canopy fuel variables was also 

affected by pulse density changes, since they were estimated 

using LiDAR full-waveform metrics. New regression models 

were generated after modification of the voxel size and the 

criteria for voxel value assignation in order to evaluate if the 

flight stripe side-lap effect was corrected (see Figure 4). 

 

LiDAR full-waveform metrics explained in Cao et al. (2014) 

and modified with the criteria voxel size and voxel value 

assignation were used as independent variables, while structure 

and canopy fuel variables calculated according to field data 

were the dependent variables (see Table 1). 

 

Firstly, a feature selection was carried out using Bayesian 

Information Criterion (BIC) (Schwarz, 1978) and selecting a 

maximum of three variables. Then, a linear regression was 

applied using the selected features and leave-one-out cross-

validation. This process was carried out for the initial data as a 

reference (0.25 m voxel size and assigning the maximum value 

of all the waveforms within the voxel), and for the testing set 

that reduced metric differences between paired samples after 

applying statistical tests and calculating differences of 

standardised variables. Regression models were evaluated using 

adjusted coefficient of determination (R2), root-mean-square 

error (RMSE), normalised root-mean-square (nRMSE), defined 

as the ratio of RMSE and the range of observed values, and the 

coefficient of variation (CV), as the RMSE divided by the mean 

of observed values. 

 

Afterwards, structure and canopy fuel variables were estimated 

for a small zone (4 km2) of the study area using the two 

regression models mentioned: the initial one as a reference and 

the model selected (Figure 4). 

 

 

4. RESULTS AND DISCUSSION 

 

Table 2 shows statistical results for each testing variation 

carried out, indicating when differences are statistically 

significant between paired samples, being our target to achieve 

a greater number of variables with no statistical dissimilarities. 

 

 0.25 m 

Max. Mean Median Mode p90 p95 

       

HOME NO NO NO NO NO NO 

WD NO NO NO NO NO NO 

NP YES YES YES YES YES YES 

ROUGH YES YES NO NO YES YES 

HTMR NO NO NO NO NO NO 

VDR YES YES YES YES YES YES 

RWE YES YES YES YES YES YES 

FS YES YES YES YES YES YES 

a) 

 0.5 m 

Max. Mean Median Mode p90 p95 

       

HOME NO NO NO NO NO NO 

WD NO NO NO NO NO NO 

NP YES YES YES YES YES YES 

ROUGH NO NO YES YES NO NO 

HTMR NO YES YES YES NO NO 

VDR YES YES YES YES YES YES 

RWE YES YES YES YES YES YES 

FS YES YES YES YES YES YES 

b) 

 1 m 

Max. Mean Median Mode p90 p95 

       

HOME NO NO NO YES NO NO 

WD NO NO NO NO NO NO 

NP YES YES YES YES YES YES 

ROUGH YES YES YES YES YES YES 

HTMR NO YES YES YES YES NO 

VDR NO YES YES YES YES YES 

RWE YES NO YES YES YES YES 

FS YES YES YES YES YES YES 

c) 
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 2 m 

Max. Mean Median Mode p90 p95 

       

HOME NO NO NO NO NO NO 

WD NO NO NO NO NO NO 

NP YES YES YES YES YES YES 

ROUGH YES YES YES YES YES YES 

HTMR NO NO NO NO NO NO 

VDR NO NO NO NO NO NO 

RWE YES NO NO YES YES YES 

FS YES YES YES YES YES YES 

d) 

Table 2. Statistical test results for each testing set: (a) 0.25 m, 

(b) 0.5 m, (c) 1 m, and (d) 2 m. “YES” and red-coloured cells 

indicate that there was a significant difference at 95% of 

confidence level, whereas “NO” and green-coloured cells means 

that there was not a significant dissimilarity. 

 

As shown in Table 2, HOME and WD are the only variables 

that are never significantly different, with the exception of 

HOME in the 1m-mode testing variation. On the contrary, NP 

and FS paired samples are always significantly different. Other 

metrics, such as VDR and RWE, become homogeneous when 

voxel size increases; ROUGH achieves its best result using a 

voxel size of 0.5 m; and HTMR becomes statistically different 

for 0.5 and 1 m, and more homogeneous for 0.25 and 2 m. 

 

As observed in Table 2, voxel size parameter generates a higher 

impact between metrics differences than voxel value assignation 

criteria. Depending on voxel size, some voxel value 

assignations generate paired samples more homogeneous. 

 

Analysing the different testing variations carried out and 

displayed in Table 2, 2m-mean and 2m-median were the testing 

sets having more variables with no significant differences 

between high and low density areas (5). This leads to affirm that 

voxel size modification (from 0.25 m to 2 m) and voxel value 

assignation change (from maximum to mean or median) reduced 

significant differences according to statistical tests, except for 

the variable ROUGH. 

 

Figure 5 displays, for LiDAR full-waveform metrics, the 

absolute value averages of differences between standardised 

paired samples in each testing set, allowing for quantifying and 

comparing statistical test results. 

 

VDR is displayed together with HTMR in Figure 5. HTMR and 

VDR graphs are identical, since when differences are calculated 

for both metrics the same equation is obtained. 

 

In (5) is observed that ΔHTMR = - ΔVDR, and working with 

absolute value, like in our case, variable differences are 

identical. 

 

 

 

 

 

(5) 

 

 

 

 

 

Figure 5 displays four different global behaviours: WD and NP 

differences decrease when voxel size increases; HOME, HTMR, 

VDR and RWE results improve with 0.5 and 1 m voxel size 

(except mode); FS has not a clear behaviour, increasing and 

decreasing differences depending on voxel size; and ROUGH 

clearly increases when voxel size is larger. 

 

For HOME, HTMR and VDR variables, it is observed that the 

assignation of the median shows slightly lower differences, but 

the mode increases these dissimilarities between high and low 

density areas. 

 

In Figure 5h, the differences between voxel size and criteria to 

voxel value assignations are shown. There is a great 

improvement between 0.25 m and 0.5 m or 2 m, and 

dissimilarities increase for 1 m with respect to 0.5 m and 2 m. 

Regarding voxel value assignation, the mean achieves the best 

results and the mode the worse. 

 

As observed in Figure 5i, the mean has the lowest differences 

and the mode the largest differences. Additionally, all the 

assignations achieve their best results with 1 m, except for 

mean, median and mode. For the mean assignation, 0.5, 1 and 2 

m are similar, being 2m-mean the lowest difference of all the 

testing sets. Comparing with Figure 5h, all the dissimilarities 

decrease after deleting those variables (NP, ROUGH and FS) 

that present the main differences between paired samples. 

 

It can also be observed that all the voxel value assignations 

have similar behaviour when voxel size is lower. This is due to 

the fact that when voxels are smaller they have less waveforms 

crossing inside, therefore these differences are smaller or 

inexistent if just one point is within the voxel. WD metric is 

identical for all the voxel value assignations, since this variable 

is measured from the beginning of the waveform, which is not 

modified by voxel value assignation changes. 

 

According to Figure 5h and 5i, 2m-mean testing set is the one 

with the lowest differences between paired samples, which 

confirms statistical tests. Differences between Table 2 and 

Figure 5 are due to the fact that statistical tests compare 

measures of central tendency (mean and median), while the 

absolute value of paired samples differences quantifies the 

module of the errors. There are some cases where mean or 

median of errors are close to zero because negative and positive 

errors are neutralised, whereas absolute value of paired sample 

differences show that the difference is not close to zero. In this 

case, the median value would not be able to detect outliers, 

because it makes a balance between negative and positive 

ranking errors, but it does not quantify the differences. This is 

why statistical tests are complemented by absolute value of 

paired sample differences. 

 

In the cases where a testing set is significantly different (see 

Table 2), this is because the differences between paired samples 

are neutralized and the average is close to zero, but absolute 

value of paired sample differences have large values (see Figure 

5): HOME in 2m-mode; ROUGH in 0.5m-maximum, 0.5m-

mean, 0.5m-p90 and 0.5m-p95; HTMR in 2m-mode; VDR in 

2m-mode; RWE in 2m-median. 

On the contrary, there are some cases where statistical tests 

show statistically significant differences (see Table 2), whereas 

absolute value of paired sample differences (see Figure 5) is 

small. This is because negative and positive differences are not 

balanced, but the absolute value of these differences is small. 

This is detected in: ROUGH in 0.25m-maximum, 0.25m-mean, 
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Figure 5. Graphs displaying the average of differences between standardised paired samples for each LiDAR full-waveform metric: 

(a) HOME, (b) WD, (c) NP, (d) ROUGH, (e) HTMR/VDR, (f) RWE, (g) FS, (h) average of all metrics differences between 

standardised paired samples for each testing set, (i) represents the same as h) but without including NP, ROUGH and FS variables 

 

0.25m-p90 and 0.25m-p95; HTMR in 0.5m-mean, 0.5m-

median, 0.5m-mode, 1m-mean, 1m-median and 1m-p90; VDR 

in 0.25-maximum, 0.25-mean, 0.25m-median, 0.25m-mode, 

0.25m-p90, 0.25m-p95, 1m-mean, 1m-median, 1m-p90 and 1m-

p95; RWE in 0.5m-mean, 0.5m-median and 1m-p90. 

Although NP and VDR improvement is not reflected in the 

statistical tests (see Table 2), Figure 5c and 5e show how the 

differences between high and low density areas decrease. 

However, this is not enough to be statistically different. 

 

Comparing the overall results of LiDAR full-waveform metrics 

in Figure 5, HTMR, VDR, WD and HOME have the lowest 

differences, while FS and NP have the largest dissimilarities. 

However, for the selected testing set (2m-mean) RWE has the 

lower differences and ROUGH the largest. 

 

Statistical tests show a slight improvement (see Table 2), but in 

Figure 5 can be noticed how voxel size and assignation type 

modifications produce more homogeneous samples. Even 

ROUGH variable results, where voxel size modification does 

not reduce the differences, are improved when assignation type 

is changed from maximum to median or mode using 0.25 m 

voxel size (see Figure 5d). 

 

Table 3 shows the results of the different regression models for 

each estimated variable using initial data as a reference (0.25m-

maximum) and the testing variation selected after analysing 

statistical results and differences between paired samples (2m-

mean). 

 

Table 3 shows that regression models generated with 2m-mean 

globally improve with respect to the results obtained with 

0.25m-maximum, but these differences are small (up to 3%). 

This can be explained because plots are small compared to 

flight stripe side-lap areas, and a plot could be completely 

inside or outside this area, not being the pulse density variations 

reflected in the results. 

 

Figure 6 shows the estimation of quadratic mean diameter 

(QMD) variable for a small zone of the study area using (5a) 

0.25m-maximum and (5b) 2m-mean data. 

 

QMD was estimated using HOME and HTMR variables for the 

2m-mean testing set, which according to Table 2d, Figure 5a 

and 5e has not significant dissimilarities and absolute value of 

paired sample differences is low. Contrary to Table 3, in Figure 

6b shows that the flight stripe side-lap effect disappears when 

the variable is estimated for a larger area. Figure 6a is also 

smoother than Figure 6b, because each pixel of the latter 

contains less voxels. 

 

 

5. CONCLUSIONS 

 

Using an appropriate combination of voxel sizes and value 

assignation method, the flight stripe side-lap effect in LiDAR 
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Variable Evaluation parameter 0.25m-max. 2m-mean 

    

AGB 

R2 0.85 0.84 

RMSE (t.ha-1) 77.47 80.42 

nRMSE 0.09 0.09 

CV 0.25 0.26 

BA 

R2 0.74 0.74 

RMSE (m2.ha-1) 11.36 11.23 

nRMSE 0.11 0.11 

CV 0.25 0.24 

QMD 

R2 0.78 0.78 

RMSE (m) 0.06 0.06 

nRMSE 0.09 0.10 

CV 0.18 0.19 

SDI 

R2 0.66 0.68 

RMSE 67.07 63.96 

nRMSE 0.12 0.11 

CV 0.23 0.22 

V 

R2 0.72 0.73 

RMSE (m3) 89.66 89.38 

nRMSE 0.11 0.11 

CV 0.25 0.25 

CH 

R2 0.65 0.68 

RMSE (m) 5.16 4.95 

nRMSE 0.12 0.11 

CV 0.22 0.21 

CBH 

R2 0.70 0.72 

RMSE (m) 3.89 3.81 

nRMSE 0.10 0.10 

CV 0.28 0.28 

CBD 

R2 0.65 0.66 

RMSE (kg.m-3) 0.05 0.05 

nRMSE 0.13 0.13 

CV 0.36 0.36 

CFL 

R2 0.76 0.74 

RMSE (t.ha-1) 11.30 11.81 

nRMSE 0.11 0.11 

CV 0.23 0.24 

Table 3. Results of different regression models for each 

estimated variable 

 

full-waveform metrics can be significantly reduced. When using 

LiDAR full-waveform data with point density variability and 

similar characteristics than the one used in the tests, a voxel size 

of 2 m and the assignation of the mean amplitude value of all 

the waveforms within the voxel is recommended to reduce this 

effect in metric values. There are relevant differences of this 

effect depending on which metrics are considered. In the test we 

developed, some full-waveform metrics highly affected by point 

density variations are: NP, ROUGH and FS. After removing 

these metrics, differences between different point density areas 

were reduced using the assignation of the mean amplitude value 

of all the waveforms within the voxel and a voxel size of 0.5, 1 

or 2 m. After voxel size and assignation value modification, 

flight line side-lap effect is reduced in the forest structure and 

canopy fuel variable maps. 

In addition to voxel size and criteria to voxel value assignation, 

other data treatments can be carried out in further work, such as 

point filtering techniques to equalise densities in all the area. 

These techniques could be made by analysing point density 

along the study area and then selectively reducing it until 

obtaining an homogeneous distribution, or using the flight 

trajectory information to detect flight stripe side-lap areas and 

then removing LiDAR points in order to equalise densities. 

 

 
a) 

 
b) 

Figure 6. Estimation of quadratic mean diameter (QMD) for a 

small zone of the study area using (a) 0.25m-maximum (the 

effect is evident in some flight lines), and (b) 2m-mean data. 
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