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ABSTRACT: 
 
Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually 
constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at 
breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are 
mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on 
lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength 
of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in R2 and increase in relative RMSE were found in 
lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model 
residuals fundamentally introduce errors to lidar-AGB models.  
 
 

1. INTRODUCTION 
 

Forests play an important role in global climate change and can 
absorb CO2 in the atmosphere via photosynthesis and store the 
sequestered carbon as biomass (Myneni et al., 2001; Pacala et 
al., 2001; Pan et al., 2011). Thus, accurate estimates of forest 
biomass are crucial for understanding global carbon cycle and 
predicting the future climate (Chen et al., 2015). Tree 
aboveground biomass (AGB) refers to the total amount of living 
aboveground organic matters present in trees, including leaves, 
twigs, branches, main bole and bark (Brown 1997). Field AGB 
measurements usually are not achievable at forests with dense 
canopies, and cannot cover extensive spatial area. Light 
detection and ranging (lidar) is a remote sensing technology that 
has been widely used to estimate forest biomass at plot and 
stand levels (Lefsky et al. 1999; Hyde, Nelson et al. 2007; Chen 
et al. 2012). Canopy vertical structural indices can be extracted 
from lidar measurements. Lidar-based canopy indices are used 
to construct regression models with ground reference AGB 
estimates, which are usually calculated from allometric models. 
 
Tree diameter at breast height (dbh) is considered as the most 
reliable parameter for AGB estimates. Thus, AGB allometric 
models were widely developed based on dbh (Bartelink, 1996; 
Basuki et al., 2009; Jenkins et al., 2003; Nelson et al., 1999; 
Ter-Mikaelian and Korzukhin, 1997; Zianis and Seura, 2005). 
The fundamental assumption of using lidar canopy height 
indices to associate with ground AGB reference is that stands 
(plot) with the same height produce the same amount of 
biomass products. However, at individual tree level, there is 
considerable variation in tree height at given tree dbh. This 
variation is reflected as residuals existing fitted height-dbh 
allometric models. Tree height-dbh model residuals probably 
reduce the correlation between lidar canopy height indices and 
ground AGB reference, consequently introducing errors to 
lidar-based AGB models.  

 
Exactly how and to what extent the tree level height-DBH 
allometric model residuals impact the plot level lidar-based 
AGB models remains poorly understood. Little study has 
addressed the lidar-based AGB model errors induced by height-
dbh allometry. This study aims to exploring how lidar-based 
AGB model performance change with the decreasing strength 
of tree height-dbh allometric relationship. A Monte Carlo 
simulation approach was used to develop plots with varying 
strength of individual tree height-dbh relationship. For each 
height-dbh model scenario, 1000 realizations were created.  
Pseudo point clouds were collected from the simulated canopy 
surface. Mean canopy height (MCH) was extracted by 
averaging plot point cloud. Finally, a simply linear regression 
model was developed with reference AGB and MCH. Average
R2 and RMSE were reported for each simulation scenario. The 
changing patterns of R

2 and RMSE reveal sensitivity of plot 
level lidar-based AGB model to the varying individual tree 
height-dbh relationship. Some further implement suggestions 
and potential approaches of improving the model performance 
were proposed.  
 

2. STUDY AREA and METHODS 
 

2.1 Study area and field data 
 
The study area is located in United States Forest Service 
Sagehen Creek Experimental Forest in California. A systematic 
sampling grid with 125 m space density was established. Plot 
size is 0.05 ha. For each plot, trees with dbh greater than 5 cm 
were measured. Tree species were recorded. Tree crown ratio 
was estimated.  
 
2.2 Reference AGB calculation 
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USDA Jenkins allometric equation model (Jenkins et al., 2003) 
is available to generate AGB estimates in northern California. 
The general equation form is expressed as following: 
AGB = eβ0+β1*ln(dbh)  (1) 

where AGB is the tree total aboveground biomass, e (2.71828) 
is the base of the natural logarithm, β0  and β1 are parameters 
that are dependent on specific tree species groups, DBH is 
diameter at breast height, and ln is natural logarithm .  
 
Plot level biomass was converted to total biomass density, 
which is the sum of individual tree biomass present in the plot 
divided by the area of the plot.  
 
2.3 Monte Carlo Simulation 
 
2.3.1 Height-dbh model 
Field tree height and dbh measurements were used to develop 
simple height-dbh model at log-transformed scale. Their 
relationship is presented in Figure 1. As it shows in Figure 1, 
considerable residuals exist in the height-dbh relationship. This 
model was the base to further establish tree height-dbh 
relationship with different strength scenarios.  
 

 
Figure 1.Constructed height – dbh allometric model at log-
tranformed scale with field data 
 
 
2.3.2 Simulation 
 
Step 1. deciding the location and crown diameter of each trees 
Plot tree density and dbh were obtained from field sample data. 
Tree relative locations were randomly assigned within each plot. 
Distance between any pairs of trees was determined with a rule 
that Dis tanceij ≥1.5*(dbhi + dbhj ) , where Dis tanceij is 

distance between the geometric centre of ith and jth trees, dbhi
and dbhj are the dbh of ith and jth trees repectively. Crown 
diameter was determined by existing models developed by Gill 
et al. (2000).  
 

Step 2. generating simulated tree height from dbh using tree 
height-dbh allometric model under different scenarios 
For different scenarios, the strength of the log-transformed 
height-dbh allometric model was controlled by assigning 
variance of residuals (𝜎!). The 𝜎! was increase from 0 to 0.5. 
Totally, ten scenarios were performed. For each stime, the 𝜎! 
was increased 0.05 compared with previous scenario.   
 
For each tree, the height was generated with equation in 2.3.1, 
by adding a random residual. For all the simulated trees, the 
residual of log-transformed height-dbh model has the normal 
distribution N(0,𝜎!).  
 
Step 3. Generate pseudo lidar point clouds 
Pseudo lidar point clouds were obtained from the simulated 
canopy surface with a density two to four returns per square 
meter. lidar MCH was extracted from the pseudo point clouds. 
All the returns were classified as ground returns and foliage 
returns. 
 
Step 4: Constructing LiDAR-AGB models 
Reference AGB estimates were calculated with Jenkins 
equations. And a simply linear regression was used to construct 
lidar-based AGB models with reference AGB and lidar MCH at 
log-transformed scale. The model is expressed as following: 
ln(AGB) =α0 +α1 * ln(MCH )+ e0 (2) 
where AGB is plot reference AGB density, α0 and α1 are the 
estimated parameters, and e0 is the residual of the predictions. 

Model performance was evaluated with R2 and RMSE.  
 
Step 5: Generating 1000 realizations for each tree height-dbh 
model scenario 
1000 realizations were generated for each scenario by repeating 
step 1 to 4 to eliminate effect of random locations of trees and 
canopy overlapping. The average R2 and relative RMSE (ratio 
between RMSE and mean reference AGB density) of regression 
models from 1000 realizations were recorded. 
 

3. RESULT 
 

The increasing variance of log-transformed height-dbh model 
residuals led to decreasing strength of height-dbh relationship. 
The R2 of log-transformed lidar-based AGB model apparently 
declines, as consequence of decreasing strength of log-
transformed height-dbh model (Figure 2). Theoretically, as 
height and dbh have perfect relationship (variance of residuals 
is zero), the R2 of lidar-based AGB model is near 0.80, with a 
relative RMSE of 0.36. When the variance of log-transformed 
height-dbh model residuals increases to 0.5, average R2 of lidar-
based AGB model decreases to 0.61. The simulation result 
demonstrates the scattering of individual tree level height-dbh 
allometric relationship introduces errors to lidar-based AGB 
estimation.  
 

4. DISCUSSIONS and CONCLUSION  
 

Previous studies have extensively studied on the resources that 
cause variation in lidar’s performance of AGB estimation. 
These resources include: various types of sensors (Zolkos et al., 
2013), regression approaches (Chen et al., 2010; Chen et al, 
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2015; Dalponte et al., 2008; Garcıa-Gutiérreza et al.; Gleason 
and Im, 2012), and whether or not optical remote sensing data is 
fused with lidar data (Anderson et al., 2008; Koetz et al., 2007; 
Lefsky et al., 2005; Swatantran et al., 2011; Laurin et al., 2014). 
However, these sources introducing errors to lidar-based AGB 
models are more considered as external factors rather than the 
intrinsic limitations of further improving the performance of 
lidar in biomass estimation. The novelty of this study is to 
investigate the errors introduced by height-dbh model residuals 
using Monte Carlo approach. The general decreasing R2 of 
lidar-based AGB model under scenarios of increasing variance 
of height-dbh model residuals manifested that the individual 
tree level height-dbh allometry is a fundamental factor 
impacting on the performance of lidar-based AGB models.  
 
 

 
Figure 2. Simulation result: change in  (blue diamond line) 
and relative RMSE (red square line) of log-transformed lidar-
AGB model, under the scenarios of increasing variance of log-
transformed height-dbh model residuals.  
 
 
The result implies that if a generalized lidar-based AGB model 
is developed for a spatially spread area, the accuracy of the 
model is probably poor, due to the large discrepancy in the 
strength of height-dbh allometric relationship. Tree height-dbh 
allometry could vary at forests of different development stages, 
species compositions, and locations. While sampling trees and 
constructing lidar-based AGB models, foresters should take the 
tree height-dbh allometry into consideration.  
 
Another suggestion is to add tree height as an extension 
variable in estimating reference AGB. Including tree height in 
reference AGB estimation could enhance lidar’s association 
with ground reference AGB, because it directly provides the 
stand height variation at given basal area. Reference AGB 
estimates with extra height information are more related to lidar 
canopy vertical measurements. Some allometric models use 
both tree height and dbh as parameters for AGB estimation 
(Heath et al. 2009; Zhou and Hemstrom, 2010). Zhao et al. 
(2012) already found performance of lidar-based AGB models 
could be different, when different allometric equations were 
applied for estimating reference AGB. Their finding suggested 
including tree height in field AGB estimation largely influences 
the model’s accuracy.  
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