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ABSTRACT: 

In this study, we characterised the temporal-spectral patterns associated with identifying acute-severity disturbances and low-severity 

disturbances between 1985 and 2011 with the objective to test whether different disturbance agents within these categories can be 

identified with annual Landsat time series data. We analysed a representative State forest within the Central Highlands which has 

been exposed to a range of disturbances over the last 30 years, including timber harvesting (clearfell, selective and thinning) and fire 

(wildfire and prescribed burning). We fitted spectral time series models to annual normal burn ratio (NBR) and Tasseled Cap Indices 

(TCI), from which we extracted a range of disturbance and recovery metrics. With these metrics, three hierarchical random forest 

models were trained to 1) distinguish acute-severity disturbances from low-severity disturbances; 2a) attribute the disturbance agents 

most likely within the acute-severity class; 2b) and attribute the disturbance agents most likely within the low-severity class. 

Disturbance types (acute severity and low-severity) were successfully mapped with an overall accuracy of 72.9%, and the individual 

disturbance types were successfully attributed with overall accuracies ranging from 53.2% to 64.3%. Low-severity disturbance 

agents were successfully mapped with an overall accuracy of 80.2%, and individual agents were successfully attributed with overall 

accuracies ranging from 25.5% to 95.1. Acute-severity disturbance agents were successfully mapped with an overall accuracy of 

95.4%, and individual agents were successfully attributed with overall accuracies ranging from 94.2% to 95.2%. Spectral metrics 

describing the disturbance magnitude were more important for distinguishing the disturbance agents than the post-disturbance 

response slope. Spectral changes associated with planned burning disturbances had generally lower magnitudes than selective 

harvesting. This study demonstrates the potential of landsat time series mapping for fire and timber harvesting disturbances at the 

agent level and highlights the need for distinguishing between agents to fully capture their impacts on ecosystem processes.  

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Disturbance regimes play an important role in wet sclerophyll 

forests in South-East Australia by renewing old and susceptible 

forests, recycling nutrients and supporting habitat structures 

(Attiwill, 1994). The two key forms of disturbance that occur 

within these forests are natural disturbance (primarily wildfire) 

and human disturbance (primarily timber harvesting). Other 

types of natural disturbance in these forests include windthrow 

and mechanical damage - particularly in the understory - 

resulting from snowstorms. Human disturbance also includes 

planned burning and a range of silvicultural management 

regimes. 

 

There has been increasing debate in the literature on whether 

human disturbance through timber harvesting has altered 

interactions between wildfire and wet sclerophyll forests, 

resulting in more widespread fire outbreaks. Some studies 

support the hypothesis that timber harvesting increases fire risk 

and severity (Lindenmayer, 2010; Lindenmayer et al., 2011, 

2009) and others oppose (Attiwill and Adams, 2013; Attiwill et 

al., 2014; Ferguson and Cheney, 2011). 

 

In Victoria, the most comprehensive disturbance information at 

the landscape level is found in the State Fire History Database 

(SFHD) (Department of Environment Land Water and 

Planning, 2015a) and the State Logging History Database 

(SLHD) (Department of Environment Land Water and 

Planning, 2015b). These databases have employed a range of 

methods to document and map fire and logging disturbances. 

Unfortunately both of these databases have significant 

documented positional and attributional limitations (Department 

of Sustainability and Environment, 2009a; GHD, 2012; Phan 

and Kilinc, 2015). These limitations may be overcome by 

mapping disturbances using Landsat time-series data. It is 

hoped that this will increase the knowledge and understanding 

of landscape-causes and consequences of both natural and 

anthropogenic disturbances within these forests and better 

inform the debate.  

 

Previous studies have shown that Landsat’s spectral bands can 

be used to discriminate fire severity and logging intensity in wet 

sclerophyll forests in South-East Australia. Victorian studies 

utilising Landsat for fire severity mapping (Department of 

Sustainability and Environment, 2009b, 2007, 2003; Haywood 

and Sparkes, 2009) or timber harvesting  (Lehmann et al., 2013; 

Miller et al., 1994; Woodgate and Black, 1988) have used 

spectral information from one or two images. However 

approaches based on single years or binary maps are often 

restricted in their ability to characterise the complex dynamics 
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between wildfire, climate change and timber harvesting. Thus a 

more comprehensive mapping approach utilising longer time 

series and characterising the disturbance magnitude and 

duration would be beneficial.  

 

Following the opening of the United States Geological Survey 

(USGS) Landsat archive and the related increase in capacity to 

produce time series (Wulder et al., 2012), Landsat time series 

have increasingly been used at the regional scale to map a range 

of disturbances (timber harvesting, wildfires and insect 

outbreaks) using pixel-based time-series methods (White et al., 

2014). The adoption of these techniques by Australian forest 

agencies has been limited. This has been partly due to the 

computational complexity of some of the procedures, use of 

proprietary software and the empirical nature of the customised 

requirements such as the trial and error basis for determining 

the optimal parameterization for the segmentation of the pixel 

time series (e.g. (Kennedy et al., 2007)). Nevertheless, with 

increasing availability of Landsat imagery and cloud computing 

(Wulder and Coops, 2014), coupled with diminishing 

availability of skilled photo interpreters (Haywood and Stone, 

2011), there is increasing interest in South-East Australia for 

analysing pixel time series to better understand the ecological 

dynamics of fire, logging and their interactions within wet 

sclerophyll forests. 

 

As significant research remains to be done before fully 

automated landscape level forest disturbance mapping can be 

achieved, the general approach adopted here has been to 

develop a semi-automated pixel-time-series-based method 

which is as practical as possible. Thus the interim goal - rather 

than trying to replace existing databases and associated methods 

- should be to support them in generating more timely, 

consistent (temporal and spatial) and accurate products. New 

and/or better tools are required to produce incremental 

improvements in these areas. It is not necessary for these tools 

to provide final solutions or 100% correct results, they simply 

need to be tools that are useful and that can be easily corrected 

when things go awry. They should be simple to apply, not 

require expensive equipment, not substantially alter the existing 

mapping workflow, nor involve inordinate fine-tuning by the 

interpreter.  

 

Although there are a number of existing pixel-level disturbance 

mapping  tools available in the literature for identifying forest 

dynamics (Karfs et al., 2004; Kennedy et al., 2010; Udelhoven, 

2011; Verbesselt et al., 2010), they have all been developed 

overseas for non-eucalypt forests and significant effort is 

required to become familiar with these algorithms and 

associated proprietary software modules. As a consequence, an 

alternative approach that develops an integrated workflow 

process utilising standard (maintained) open-source software 

and packages was applied to this study. To ease the 

computational burden and storage requirements it was decided 

to limit the approach to utilize annual Landsat time series. The 

overall goal was to determine the capacity of readily available 

open-source tools to model spectral-temporal pixel time-series 

from annual Landsat time series to map fire and timber 

disturbance dynamics within wet sclerophyll forests in South-

East Australia. 

 

Specific objectives were to: 

 

1. test how well fire and timber harvesting disturbances 

can be distinguished with annual Landsat time series 

and open-source software; 

2. characterise the spectral-temporal pixel-time-series of 

fire and timber harvesting disturbances with respect to 

severity magnitude and spectral recovery; and 

3. map the spatial and temporal pattern of fire and timber 

harvesting disturbances using open-source software. 

 

2. OPEN-SOURCE SOFTWARE 

By adopting an open-source approach for spatial data 

management, processing and analysis, users such as forest 

management agencies can benefit from freely available software 

products and access to source code through which new 

algorithms can be integrated and manipulated. The key open-

source software utilised within this study are outlined below. 

 

2.1 GRASS 

The Geographical Resources Analysis Support System 

(GRASS) platform (GRASS Development Team, 2012) was 

chosen due to its popularity within the open-source community 

and because it fully integrates with the open-source statistical 

software package, R (R Development Core Team, 2012), along 

with the python scripting language (van Rossen, 1995). It is an 

open-source geographical information system (GIS) capable of 

handling raster, topological vector, image processing and 

graphic data. Released under the GNU General Public License 

(GPL), GRASS is developed by a multi-national group of 

developers and is one of the eight initial software projects of the 

Open Source Geospatial Foundation. GRASS has a modular 

structure into which may be plugged new routines programmed 

in a variety of languages (e.g., Python, C, shell), and there are 

over 300 modules and more than 100 addon modules for the 

creation, manipulation and visualisation of both raster and 

vector data. The GRASS modules are designed under the UNIX 

philosophy (i.e., that programs work together and handle text 

streams) and can be combined using scripting to create more 

complex or specialized modules by a user. GRASS supports an 

extensive range of raster and vector formats through 

GDAL/OGR libraries, including OGC-conformal (Open 

Geospatial Consortium) Simple Features for interoperability 

with other GIS. 

 

2.2 R  

R is an open-source language and software environment 

commonly used in research fields for statistical computing and 

graphics. One of the main advantages of R is its object-

orientated approach, which allows results of statistical 

procedures to be stored as objects and used as input in further 

computations. R is a simple and effective formal complete 

programming language, and the R environment is, therefore, 

highly extensible. GRASS and R software can be integrated 

through the R package, spgrass (Bivand, 2007), an interface 

allowing GRASS functions to be implemented within R code 

and data to be easily exchanged between the two software 

packages. In addition, R package, raster (Hijmans and van 

Etten, 2012), has functions for creating, reading, manipulating, 

and writing raster data. The package also implements raster 

algebra and most functions for raster data manipulations that are 

common in GIS. 

 

2.3 Python 

Python is an object-orientated high-level programming 

language that is widely used as a scripting language in the 

spatial analysis environment. Python’s popularity has led to the 
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creation of many useful libraries, increasing its flexibility and 

interoperability, and it has well developed modules for linking 

with GRASS and R. 

 

3. STUDY AREA 

3.1 Geographic and biophysical characteristics 

Our study area is the Toolangi State Forest and surrounding 

area. This forest is located approximated 80 km north east of 

Melbourne, in the Victorian Central Highlands, South-East 

Australia. The total area of the Toolangi State forest is 

approximately 40,000 hectares. The total area of the study area 

is 180,000 hectares. A high proportion of this mountainous area 

supports wet sclerophyll forests, dominated by Eucalyptus 

regnans (Mountain Ash). The area was selected to represent a 

variety of ash-forest types, forest conditions and disturbances. 

As mentioned previously, these forests are currently at the 

centre of a debate on whether timber harvesting in the region 

increases fire risk and severity.  

 

The area experiences a cool temperate climate, with mild 

summers and cool winters. Average annual rainfall exceeds 

1200 mm over most of the area. Soils tend to be free draining, 

friable, brown gradational, have high water holding capacities, 

and have developed on a variety of volcanic parent rock 

materials (Department of Natural Resources and Environment, 

1988). 

 

3.2 Natural and anthropogenic disturbances 

Wildfire is the major natural disturbance associated with the 

study area. Several fires have occurred within the study area 

over the past 150 years, the most extensive being in 1926; 1939 

and the recent extreme fire event of 2009 (Price and Bradstock, 

2012). 

 

The study area is also subject to intensive hardwood timber 

harvesting. Large-scale timber cutting, generally selective 

harvesting and sawmilling occurred in these forests in the latter 

part of the nineteenth and early twentieth centuries. Large-scale 

salvage operations followed major wildfires, particularly the 

extensive 1939 fires. Since the 1960s, clearfellling has been the 

major silvicultural system practised (Squire et al., 1991).  

 

 
Figure1: Study area located in Central Highlands of Victoria, 

Australia. 

 

 

4. DATA AND METHODS 

A general overview of the methods used in this study is shown 

in Figure 2. Each of the steps taken in the study are described in 

detail below. 

 

 
Figure 2: Flowchart outlining the main steps implemented in 

this study 

 

4.1 Forest population mask 

Similar to Hansen et al. (2013) we used a forest/non-forest mask 

to avoid confusion between forest disturbances and other land 

cover dynamics. The forest/non-forest mask used was that 

created by Mellor et al. ( 2013). 

 

4.2 Landsat data and pre-processing 

We downloaded all level-1 terrain-corrected (L1T) Landsat data 

acquired between 1 January 1984 to 28 February 2011 with 

cloud cover < 90% from the USGS archive for path 92 and row 

086. Each image was first screened for cloud and cloud shadow 

using Fmask (Zhu and Woodcock, 2012) and converted to 

surface reflectance using LEDAPS for the 23 year time period 

(Masek et al., 2006).  

 

To minimise the effect of phenology and data gaps caused by 

atmospheric interference, we constructed annual anniversary-

date, best observation composites using all cloud free 

observations within a pre-defined seasonal window, following 

the method of Kennedy et al. (2010). For building the best 

observation composites, we defined the seasonal window as ± 

60 days around February 15.  

 

Using the outlined selection criteria we had 100% coverage for 

the annual composite stack. All pre-processing steps were 

conducted in GRASS using a range of standard and custom 

modules.  

 

4.3 Landsat vegetation indices   

In this study we utilised four indices which are responsive to 

different vegetation cover/disturbance properties including 

vegetation greenness, moisture content, canopy structure, and 

exposed soil signal. We generated Landsat time series stacks 

using the Normalised Burn Ratio (NBR, Key and Benson, 

2005), Tasseled Cap Wetness (TCW, Crist and Cicone, 1984)), 

Tasseled Cap Brightness (TCB, Crist and Cicone, 1984) and 

Tasseled Cap Angle (TCA, Powell et al., 2010). The creation of 
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the vegetation indices was conducted in GRASS using the 

mapcalc function. 

 

4.4 Landsat time series analysis 

We carried out the time series analysis using a number of 

standard R packages. The time series analysis was conducted to: 

1) extract spectral time series for each pixel 2) statistically 

identify and fit structural equations and 3) extract summary 

information from trends. 

 

4.4.1 Extraction of time series for each pixel 

 

Once the vegetation indices were calculated, the image stack 

was loaded into R using the raster package (Hijmans and van 

Etten, 2012) using the RasterStack function. Spectral time 

series were then extracted as a vector for processing using the 

calc function within the raster package. Spectral values for each 

year can be taken from any arbitrary window kernel centred on 

the pixel of interest; in this study, we chose to use the mean 

value in a 3 x 3 window as a compromise between spatial detail 

and robustness to pixel misregistration across images in the 

stack.  

 

4.4.2 Statistically identify and fitting trends 

 

Once a consistent spectral time series is extracted from the 

image stack we used the bfast package (Verbesselt et al., 2010) 

to fit a structural breakpoints from a  linear regression model. 

Following previous studies using the bfast package (DeVries et 

al., 2015; Verbesselt et al., 2012), we assigned a value of 0.25n 

to h. A structural breakpoint is declared when the null 

hypothesis of structural stability (i.e. stability of the seasonality 

pattern) is rejected (Verbesselt et al., 2012; Zeileis et al., 2005). 

The decision to reject this null hypothesis is based on a 

boundary condition which is set according to a 5% probability 

level following the Functional Central Limit Theorem (see 

(Leisch et al., 2000) for more information on how this boundary 

function is computed). 

 

4.4.3 Extract summary information from trends 

 

Once a trend was fitted to the vegetation indices time series we 

derived the following set of metrics: 

 

1. For pixels without a breakpoint detected, the slope and 

intercept of the linear trend of the time series was 

extracted 

2. For pixels with a breakpoint detected, the magnitude of 

the breakpoint was calculated, the date of the 

breakpoint, the slope and intercept for the line segments 

before and after the breakpoint were extracted.  

 

4.5 Forest disturbance mapping 

We followed a two-phase classification approach based on Senf 

et al. (2015) to map spatial and temporal patterns of natural and 

anthropogenic disturbance: First, we classified the Landsat time 

series disturbance and recovery metrics into three classes: 1) 

acute high severity disturbances; 2) low severity disturbances; 

and 3) undisturbed areas. We refer to this classification phase as 

disturbance type classification. Second, we assigned all pixels 

identified within the acute high severity in the first classification 

phase a likelihood of being disturbed by either wildfire or clear-

fell timber harvesting; we assigned all pixels identified within 

the low severity disturbance a likelihood of being disturbed by 

planned burning, selective timber harvesting, insects or drought.  

We refer to this classification phase as disturbance agent 

attribution. 

 

4.5.1 Phase one: disturbance type classification: 

 

In the first classification phase, we used the Landsat time series  

disturbance and recovery metrics to classify forest changes into 

1) acute high severity disturbances, 2) Low severity 

disturbances, and 3) undisturbed forest. High severity 

disturbances (such as clear-fell timber harvest and wildfires) 

behave differently in spectral and temporal space than low 

severity disturbances (such as selective harvesting and plan-

burning disturbances) which makes them distinguishable with 

Landsat time series. While some of the low severity 

disturbances can eventually lead to complete stand mortality, 

spectral change magnitudes associated with clear-fell timber 

harvesting and wildfire disturbances are usually significantly 

higher (Schroeder et al., 2011). As a reference data, we 

randomly selected and labelled 500 pixels closely following the 

approach by Cohen et al. ( 2010). 

 

For identifying and labelling disturbances in the reference 

pixels, we used Landsat imagery, Landsat spectral time series 

plots, high resolution imagery (Rapideye or GoogleEarth 

Imagery), the SFHD and SLHD databases.  

 

The SFHD (1903-2015) contains polygon-level data on fire 

perimeter, type (wildfire or planned burning), and for a limited 

number fires, mapping methodology and severity information. 

The SLHD (1879-2015) collects polygon-level data on extent, 

silvicultural operation, forest type, start/end dates of logging 

event and mapping methodology.  

 

Phan and Kilnic (2015) found that almost 40% of the state fire 

history database contained missing or incorrect information 

regarding the date stamps on the fires. However, they did find 

that recent records (2006-2014) have a higher quality, with only 

7% containing missing or incorrect data. To reduce 

uncertainties in our analysis we only utilised data in the state 

fire history database that could also be linked with entries in the 

state bushfire ignitions point database (Department of 

Environment Land Water and Planning, 2015c), the state 

planned burning ignitions database (Department of 

Environment Land Water and Planning, 2015d) or the Country 

Fire Incident Reporting System (Country Fire Authority, 2015). 

Some of the variability in quality within the database can be 

attributed to the wide diversity in base data and mapping 

methodologies utilised (on-screen digitising using aerial 

photography, field GPS data capture, ground observations, , 

thermal line scanner mapping, automated image interpretation 

using Rapideye, Spot and Landsat imagery, transfer from hard 

copy maps). As the extreme wildfire event of 2009 covered in 

excess 60% of the study area, this single disturbance event has 

been removed from the analysis.  

 

The state logging history database also has a range of 

documented positional and attributional limitations (Department 

of Sustainability and Environment, 2009a; GHD, 2012). The 

data is subject to a certain observer bias, variations in base data, 

and interpreter/analysis experience. It has not been uncommon 

to find 5-10% of the records omitted or duplicated.  For the last 

15-20 years the state logging history database base data has 

been sourced from GPS ground survey of the logging boundary. 

The accuracy of the resultant mapped polygon has improved but 
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is still reliant on several factors such as GPU unit specifications, 

satellite positions, atmospheric conditions and natural barriers 

to the signal. Prior to the use of GPS, the logging boundaries 

were estimated from sketch mapping on 1:10000 hard copy 

maps. 

 

In total, 47 pixels were identified as acute high severity 

disturbance, 70 pixels were identified as low severity 

disturbances and 363 were identified as undisturbed. A small 

proportion (20 pixels) could not clearly be assigned to one of 

these categories. 

 
Figure 3: Example of pixel trajectories with related Landsat 

imagery for (A) no disturbance (B) acute high severity 

(clearfell) (C) low severity (planned burning)  

 

Using the reference pixels, we trained a random forest 

classification model (Breiman, 2001) provided by the 

randomForest package (Liaw and Wiener, 2002) within R. The 

random forest model was validated using the out-of-bag 

confusion matrix (Breiman, 2001), from which we estimated 

overall, user’s and producer’s accuracies, as well as errors of 

omission and commission. 

 

4.5.2 Phase two: disturbance agent attribution: Following 

the disturbance type mapping in phase 1 (Section 4.3.1) we 

estimated for: 

1. Each acute high severity disturbance pixel the 

probability of being disturbed by wildfire or clear-fell 

timber harvesting, respectively; and 

2. Each low severity disturbance pixel the probability of 

being disturbed by selective timber harvesting or low 

severity wildfire/planned burning (for the purposes of 

this paper low severity wildfire and planned burning 

were collapsed into a single class). 

Creating a continuous probability of class presence can offer 

greater flexibility from a forest management perspective than 

discrete classes (Wulder et al., 2006). For this purpose we 

calibrated two additional random forest models with additional 

reference datasets from the state fire and logging history 

databases.  

4.5.2.1 Attribution of acute high severity disturbance 

 

For the acute high severity disturbance attribution, we selected 

all pixels covered by either wildfire or clear-fell harvesting 

polygons from the SFHD and SLHD databases.  

4.5.2.2 Attribution of low severity disturbance 

 

For the low severity disturbance attribution, we selected all 

pixels covered by either planned burning or selective harvesting 

polygons from the SFHD and SLHD databases. 

 

5. RESULTS  

5.1 Classification of disturbance types 

The disturbance classification yielded an overall accuracy of 

72.9% (Table 1), 1), with the highest user’s and producer’s 

accuracies in the undisturbed class (92.7% and 77.1%, 

respectively), slightly lower user’s and producer’s accuracies 

for the acute severity class (56.3% and 64.3%, respectively), 

and moderate accuracies for the low severity class (25.5% and 

53.2%, respectively). Class confusion was highest between low 

severity disturbance areas and undisturbed areas. In total, 14.6% 

of the forested area contained acute severity and 9.8% contained 

low severity disturbances. Most of the forested area in the study 

area (75.6%) was stable over the study period. The 

classification map (Figure 4) was used to identify acute severity 

and low severity areas for the following results. 

 

The confusion matrix is derived from the out-of-bag sample of 

the random forest model. 

 

Table 1: Validation of the first classification phase (disturbance 

type classification), which distinguishes acute high severity 

disturbances, low severity disturbances and undisturbed areas 
  Reference   

 Class 
U

n
d
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L
o

w
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y

 

A
cu
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y

 

T
o
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U
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s 
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%

 

E
rr

o
r 

o
f 
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m

m
is

si
o

n
  

M
ap

 

Undisturbed 280 15 7 305 92.7 7.3 

Low 

Severity  

55 25  20 100 25.5 74.5 

Acute 

Severity 

28 7 40 75 56.3 43.8 

Total 363 47 70 480   

 Producer’s 

accuracy % 

77.1 53.2 64.3  Overall 

accuracy 

% 

 

 Error of 

omission % 

22.9 46.8 35.7  72.9  
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Figure 4: Map derived in the disturbance classification phase 

showing undisturbed areas, acute severity disturbances, and low 

severity disturbances. 

 

5.2 Disturbance agent attribution 

The binary classification of low severity wildfire/planned 

burning and selective timber/thinning harvesting disturbances 

(using a probability threshold of p = 0.5) achieved an overall 

accuracy of 80% (Table 2), indicating that the attribution of 

these two agents is much more difficult that the acute severity 

agents (Table 3). The user’s accuracy for the selective logging 

was quite low, which means this disturbance agent was 

overestimated in the final mapped product. 

 

Table 2: Confusion matrix for predicting disturbance agents in 

low severity disturbance classes  

  Reference   
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%
 

E
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o
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o
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m

m
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si
o

n
  

M
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Low 

Severity 

Wildfire/ 

Planned 

Burning 

5335 139 5474 97.5 2.5 

Selective 

Logging 

1824 2702 4526 60.0 40.0 

Total 7159 2841 10000   

 Producer’s 

accuracy 

% 

74.5 4.9  Overall 

accuracy 

% 

 

 Error of 

omission 

% 

25.5 95.1  80.4  

 

 
Figure 5: Mapped probability of (a) selective harvesting and (b) 

low severity wildfire/planned burning. 

 

The binary classification of clearfell timber harvesting and 

wildfire disturbances (using a probability threshold of p=0.5) 

achieved an overall accuracy of 95.4% (Table 3), indicating that 

these two agents can be reliable distinguished using disturbance 

and recovery metrics derived from Landsat time series.  

 

Table 3: Confusion matrix for predicting disturbance agents in 

acute severity disturbance  

  Reference   

  
C
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o
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s 
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ra
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%
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m
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M
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 Clearfell 8444 67 8511 99.2 0.8 

Wildfire 398 1091 1489 73.3 26.7 

Total 8842 1158 10000   

 Producer’s 

accuracy 

% 

95.5 94.2  Overall 

accuracy 

% 

 

 Error of 

omission 

% 

4.5 5.8  95.4  

 
Figure 6: Mapped probability of (a) clearfell and (b) wildfire. 

 

6. DISCUSSION 

This study demonstrates the feasibility of using an open-source 

framework for constructing and evaluating a spectral pixel time 

series model and its implementation to produce an accurate 

operational land management agency forest disturbance map. 

The framework established successfully integrates freely 

available spatial data—pre-processed and collated in GRASS—
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into the R statistical analysis environment. After construction 

and validation of an spectral time series segmentation, the 

resulting model was implemented in GRASS using an R-

GRASS interface package, spgrass (Bivand, 2007), before 

finally using GRASS to filter the forest prediction map and 

apply the minimum mapping unit of the adopted forest 

definition to the final forest extent spatial product. 

 

7. CONCLUSION 

In this study we characterised acute high severity and low 

severity disturbance in South-East Australia, using a well-

established Landsat-based time series technique. From our 

results, we conclude that Landsat can be utilised to reliably 

distinguish between acute severity disturbance agents 

(clearfellng and wildfire) in our study region, using specific 

spectra time-series features. However, more research is needed 

in distinguishing between the low severity disturbance agents 

(low severity wildfire/planned burning and selective logging). 

The resulting maps and estimates offer a combined and detailed 

picture of disturbance dynamics in our study region through 

quantifying both the temporal and spatial dynamics. These 

otherwise unavailable spatially explicit and quality assured 

maps can help inform science and management needs. 
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