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ABSTRACT:

Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the
'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is
caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for
various vegetation characteristics.
However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details
about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other
hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous
reflection characteristics from the field data.
In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point
cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of
the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series
detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range.
Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical
tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

1. INTRODUCTION

1.1 General overview

Terrestrial laser scanning (TLS) data is increasingly used as a
ground based remote sensing data source. Similar to its airborne
counterpart (airborne laser scanning – ALS) established fields of
application for TLS data are forest and vegetation studies. In
contrast to optical photographic data it allows to extract
information from inside the vegetation structure with high
precision. TLS is both used on its own and in combination with
ALS data. While airborne data provides area wide coverage,
terrestrial data is often used on a sample plot basis to provide
local data with much higher resolution and from a ground based
perspective.
The three dimensional point cloud is often regarded as the
principle geometric information of light detection and ranging
(LiDAR). In addition, radiometric information which can be
derived from the strength of the reflected signal of the laser
beam, is of special importance for vegetation studies. This is
caused by the wavelength of the laser that is within the near
infrared (NIR) for most scanners. The NIR is highly indicative
for various vegetation characteristics and has been used in
remote sensing for applications like tree species detection and
tree damage assessment. However, the intensity as recorded by
most terrestrial scanners is distorted by both external and
scanner specific factors. While it varies over range and with
incident angle onto the reflecting object, TLS systems
themselves also cause alterations of the recorded intensity
values. Details of the latter are mostly unknown to the user,
which makes model driven correction approaches impractical.
Several authors already addressed the problem of intensity
correction of LiDAR data and some focused on the special
problems of TLS. Höfle and Pfeifer (2007) concentrate on
airborne data but generally compare model and data driven
correction approaches. They demonstrate that even if both
methods provide comparable results for ALS data, the model

driven approach requires detailed information on system
settings and external conditions. Based on this, Pfeifer et al.
(2007) and Pfeifer et al. (2008) investigate the correction of
intensity data for TLS more specifically. Again, they compare
model and data driven approaches. For TLS, they explain that
model driven approaches are practically not working, mainly
due to the lack of important scanner specific parameters, which
are not disclosed by the manufacturer. Furthermore, they
describe the scanner to object distance as a major factor for
intensity variations. Since sole application of the inverse-
square-law to this relationship is not sufficient for TLS data
(Höfle, 2014; Pfeifer et al., 2007), they use measurements from
reference targets recorded with a special calibration setup. This
extensive procedure requires multiple targets of known and
varying reflectivity and is separate from any field
measurements.
Kaasalainen et al. (2011), Kaasalainen et al. (2009) and
Kaasalainen et al. (2008) published a series of studies which
also make use of reference targets in order to calibrate intensity.
They observe the relationship between intensity and different
interactive variables in detail. Their main focus is on the
distance of scanner to object as well as the incident angle. Those
are considered to be of major influence to the intensity besides
the reflective properties of the object.
Höfle (2014), Koenig et al. (2015) and Koenig et al. (2013) use
a less complex approach without calibrated reference targets
which is based on the method used before by Höfle and Pfeifer
(2007) for ALS data. From the TLS data, as recorded for an
agricultural application, they extract large surface areas of
homogenous soil to use them as reference for relative
calibration of the remaining point cloud. This approach already
comes close to the intention of the present study aiming at a
practical application-oriented solution without any separate
calibration setup. The disadvantage of their approach is that it
requires environmental conditions that provide large continuous
and homogenous areas, which are rarely available for forest
applications. Additionally, the manual extraction of those areas

* Corresponding author

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-643-2016 

 
643



prevents automation of the method and increases the operational
effort.

1.2 Intensity effects of TLS data

Variation of the intensity may have different sources. The term
'intensity' is somehow inaccurate in its physical meaning. In the
context of this study, intensity is considered to be the amplitude
of the reflected signal and both terms are used interchangeably.
However, different manufacturers of scanners may measure and
define the amplitude with certain deviations (Pfeifer et al.,
2008).
Intensity variation can generally be caused either by
characteristics of the reflecting object itself or by object-
independent sources. Of primary interest is the isolation of the
object-specific intensity variations by compensating the others.
This allows conclusions about certain radiometric features of
the objects. The group of other influences can be subdivided
into scanner-specific and external sources. The effects of non-
object-specific factors often differentiates strongly between TLS
and ALS data. For example, the atmospheric influence is almost
neglectable in case of TLS, while the distance between scanner
and object has much stronger effects on TLS data. The latter is
based on the fact that for TLS specific applications, the relative
range differences between objects and scanner vary much
stronger than for ALS. This results in range being one of the
most relevant factors for explaining object-independent
intensity variations (Höfle, 2014; Koenig et al., 2015; Koenig et
al., 2013; Pfeifer et al., 2008). Also, range dependency of TLS
in near distance applications does not strictly follow the 1/r2 law
of the radar equation, as is the case for ALS (Höfle, 2014). This
is mainly caused by a number of system-related alterations from
the scanner and receiver device. Many of these system related
alterations also depend on the range (Kaasalainen et al., 2008)
and effect the function of intensity versus range. Therefore, data
driven approaches to correct the range dependency of the
intensity also compensate many of those alterations caused by
the system receiver.
Depending on the manufacturer and model of the terrestrial
scanner, different alterations of the received signal may be
applied. This is expressed by the different shapes of the curves
when plotting intensity against range for scanners from different
manufacturers, e.g. RIEGL and Optech (Pfeifer et al., 2008),
FARO (Kaasalainen et al., 2008) or devices from Leica
(Kaasalainen et al., 2011; Kaasalainen et al., 2009). For the
present study we use a FARO Focus 3D S120 scanner. In the
studies of Kaasalainen et al. (2011), Kaasalainen et al. (2009)
and Kaasalainen et al. (2008), a FARO scanner is used as well,
but a different model. Since the shape of the intensity-range
graphs are very similar to ours (see Figure 5), we assume that
similar system-specific alterations are applied. The authors
report the following alterations as conclusions from laboratory
analysis. For small reflectances a logarithmic amplifier is used.
This could result in partly compensated loss of amplitude for
objects at larger distances. For near distances, a brightness
reducer is used which results in a decrease of intensity at close
distances. It is assumed that these modifications produce a
specific pattern on the general amplitude-range distribution.

2. METHOD

2.1 Data

Data for this study has been collected in the field between
spring and autumn 2015. The study area comprises the regions
Herrschaft and Schanfigg in the canton Grisons, Switzerland.
Scans have been made on spatially separated plots of squared
shape with an edge length of 25 m. Altogether, ten spatially

separated plots have been used in this study which are evenly
split between both locations. On each plot, five terrestrial scans
have been made, four being located towards the corners and one
in the centre. Altogether it sums up to 50 scans being available.
In order to register the single scans into a common coordinate
system, six spheres have been fixed on ranging poles of varying
length and distributed over the plot area. The spheres have a
diameter of 145 mm and are of highly reflective white colour.
Differentially corrected GNSS measurements from scanner and
sphere positions were used for geocoding of the data.
The scanner model used is a FARO Focus 3D S120 which
applies phase shift technology for range measurement. The
wavelength of the laser is 905 nm and close to the lower border
of the NIR. The emitted beam has a diameter of 3 mm with a
divergence angle of 0.19 mrad. One of the experiments required
the isolation of reflections from the spheres. This was done
manually with specific tools from the FARO SCENE software.
The same software was used for registration of the single scans,
basic outlier filtering and clipping the data to a maximum range
of 100 m from the scanner. 
The wavelength of the laser at 905 nm seems to be non-optimal
for the discrimination of vegetation characteristics and
materials. Generally, LiDAR intensity has proven to be useful in
the distinction of wood and leave components (Béland et al.,
2011; Seielstad et al., 2011) and especially from ALS data for
the classification of tree species (Heinzel and Koch, 2011;
Heinzel and Koch, 2012; Kim et al., 2009). Most of these
studies which applied LiDAR intensity successfully used
scanners with a wavelength clearly above 1000 nm and mostly
at about 1500 nm. Visualization of the uncorrected 905 nm data
as recorded by the scanner system did not allow clear
dinstinction of vegetation characteristics. The same observation
has been confirmed by Pimont et al. (2015), where a detailed
discussion of this phenomenon can be found. However, this
motivated us to experiment with the automation of intensity
correction methods directly from the field data.

2.2 Detrending the intensity distribution

The method for intensity correction described in this study is
similar to the so called 'time series detrending'. Time series
detrending is originally used to detect and compensate trends of
a variable over time. In this study, we refer to the description of
an intrinsic trend as defined by Wu et al. (2007), but we transfer
this concept to a trend over range which exhibits similar
behaviour.
Detrending accounts for the general pattern of the amplitude
distribution over distance from the scanner. While there is a
relative constant local variance at small range intervals in the
dimension of centimetres, there is a much stronger variance of
amplitude over the full range up to the maximum distance. The
local variations are mainly caused by the reflection
characteristics of the objects, and the large scale variations are
caused by both the physical range dependency and the
modification from the receiver. Anticipating Figure 5, which
illustrates the reflections extracted from the spheres only, the
trend pattern becomes clear. The blue line represents a
polynomial fitted to the distribution of reflections and describes
the overall trend. Between zero and three meters the amplitude
decreases strongly with range. Then it turns into a steeply
increasing curve until seven meters of range. From thereon, it
decreases until 15 metres where it turns into a very weak
uprising trend. From 22 meters onwards, it remains about
constant with only slight variations. This typical pattern
observed on all scans is object of compensation.
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The principal task for implementing the technique of detrending
is to derive a model which describes the trend of the amplitude
distribution. This model is used to correct the whole dataset for
those amplitude variations referring to the overall trend while
preserving those deriving from reflection characteristics of the
objects. Experimentally, two different approaches to derive
those models have been tested.
The first approach fits a polynomial to the amplitude data of the
complete point cloud. The polynomial is directly used to correct
the amplitude values by division with the corresponding
polynomial values at same distance from the scanner. In order to
optimize the degree of the polynomial, we implemented a n-fold
cross validation iterating over the central scans of spatially
independent n plots. With each step, the degree of the
polynomial is increased by one and the polynomial is fitted by
the least-squares method to the merged points from nine out of
ten plots. The left out plot is iteratively used to test the derived
polynomial and the residuals are calculated. For each
polynomial degree, these residuals are summed for all iterations.
The minimum value of this series is determined and represents
the optimal degree of the polynomial. In order to reduce the
influence of outliers, we apply weights to all points prior to the
iterative procedure. Outliers are defined as those points
deviating more than two times the standard deviation within a
range bin of 1 m. Figure 1 shows the complete procedure of
polynomial optimization.

The second approach to model the overall trend substitutes the
polynomial by calculating the mean values of the amplitude at
small range intervals. The whole dataset is binned into constant
range intervals of defined size. For each bin, the mean
amplitude is computed. Finally, all amplitudes within one bin
are divided by their corresponding mean. In order to scale the
corrected amplitudes to a data range allowing 16 bit unsigned
integer encoding and which makes them comparable to the
original values, they are multiplied by the factor 1000.

3. EXPERIMENTS

3.1 Field data based correction

The first experiment directly handles the complete point cloud
as captured in the field. This means that all points independent
from their source of reflection are used to derive the model for
correction. Both the polynomial optimization as well as the
binned mean approach are tested with that data. Results are
presented for a single isolated scan.
For the polynomial approach, the degree of the polynomial was
optimized using the central scans of all plots in a 10-fold cross-
validation procedure. The optimization results in a polynomial
of twelfth degree. The upper part of Figure 2 shows the original
amplitudes plotted against range. The blue line represents the
polynomial of optimal degree and the non filled dots indicate
outliers. The lower graph of the figure displays the corrected
amplitude centred at a value of 1000.

The second approach calculates the mean amplitude values for
bin sizes of 1 m on the range axis. Figure 3 shows the
corresponding scatterplots for the same scan as in Figure 2. In
the upper graph of the figure, the blue line indicates the mean
amplitude values for the original point cloud. The lower graph

Figure 2. Amplitude correction by fitting a polynomial. Top:
The original amplitude plotted against range. The lighter non
filled dots indicate outliers. Bottom: the corrected amplitude
centred at a value of 1000.

Figure 1. The procedure for optimizing
the polynomial degree.
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displays the distribution of the corrected amplitude values
versus range.

3.2 Sphere based correction

In addition to the direct correction of the complete point data at
once, a second experiment was carried out. This experiment
takes on the role of a relative reference to be compared to the
outcome of the field data based correction. Isolated reflections
from the spheres were used as substitutes for special calibration
targets. In this context, we take advantage of the equal reflection
characteristics. Compensation for varying incident angles was
achieved by calculating the arithmetic means for all amplitudes
from each sphere. This was done for the spheres in all 50 scans
and resulted in 232 averaged samples. The experiment produces
results which are principally comparable to other approaches
using special calibration targets to derive absolute (Höfle and
Pfeifer, 2007; Pfeifer et al., 2008) or relative (Höfle, 2014;
Kaasalainen et al., 2008) calibration models.
The reference reflections from the spheres underwent the same
processing steps as the complete point cloud of the previous
experiment. Firstly, the optimal degree and the coefficients of
the polynomial fitted to the spheres samples were determined.
Figure 4 illustrates the finding of the optimal polynomial of
eighth degree for a 10-fold cross validation. The degree of the
polynomial is smaller since the maximum range of spheres
reflection is only 25 m. Figure 5 applies the optimized
polynomial to the sphere samples. The upper graph shows the
distribution of the averaged amplitudes with the polynomial
modelling the overall trend. The lower graph plots the
corresponding corrected spheres amplitudes.

For reference and comparison, some quality metrics have been
computed for this experiment. Fitting the optimal polynomial to
the spheres produces a root mean square error (RMSE) of 29.37
on the original scale. The same RMSE for intensities being
normalized to their maximum value equals 0.0156.
Furthermore, the normalized RMSE (NRMSE) was derived
according to equation (1) which is equal to 0.0836.

NRMSE=√∑i=1

n

( ŷ i−y i)
2

ymax−ymin

(1)

In equation (1) n is the number of data points (spheres), ŷi is the
predicted amplitude for ith sample of amplitude y, ymax is the
maximum and ymin is the minimum amplitude of the dataset.
To be complete, the polynomial derived from the spheres is also
applied to the full set of field data. Figure 6 shows the results
for this combination in the same form as the previous figures.

4. RESULTS AND DISCUSSION

The results of the first experiment are provided in form of
graphs in Figure 2 and Figure 3. The first approach for
modelling amplitude data fits an optimized polynomial to all
reflections from the data set. The upper graph of Figure 2 shows
the polynomial modelling the overall trend for all reflections
from one scan. While the polynomial was fitted to the complete
range of distances of 100 m from the scanner, the figure only
displays the first 25 m, where the strongest variations are
located. From the lower graph it can be seen that the intrinsic
trend and large scale variations are largely removed while the
local variations around the polynomial are preserved.
The same graphs are given for the binned means approach in
Figure 3. The curve of mean values is less smooth and reflects
local variations of the amplitude distribution more precisely
than the polynomial. While this might be an advantage in cases
where the polynomial generalizes too much, it might also
happen that the binned means result in an overfitting to the data.
The distribution of the corrected amplitude in the lower part of
the figure reveals a very smooth upper boundary. This is caused
by the locally adapted fit of the mean values to the dataset and
possibly indicates the tendency for overfitting. In this context,
overfitting largely depends on the size of the bin intervals.

Figure 4. Mean residuals of the test data from a 10-fold cross-
validation. The cross validation has been carried out for a series
of polynomial degrees. The degree with the minimum residuals
has been selected.

Figure 3. Amplitude correction using range binning and
correction by binned means. Top: Original amplitude
distribution with bin centres as blue line. Bottom: Corrected
amplitude centred at 1000.
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The coefficients of variation (CV) in the upper part of Table 1
lead to similar observations. The table compares the CVs for the
first experiment over the complete data range. From there it can
be seen that the corrected amplitude has a slightly lower CV for
the binned means compared to the polynomial variant. This is
proportionate to the smoother upper boundary of the
scatterplots. However, the differences are only small and hardly
effect any practical interpretation of the amplitude.
Figure 7 provides a three-dimensional visualization of the point
cloud with colour coded amplitudes. The upper graph shows the
original amplitudes and the lower part the polynomially
corrected amplitudes. The figure omits a separate graph with
amplitudes corrected by binned mean values because no
difference to the polynomial correction could be found visually.
For the original amplitudes, it can be clearly seen that the
highest amplitudes accumulate at around seven meters distance.
This refers to the maximum of the polynomial at the same
distance in Figures 2 and 3. For the polynomially corrected
graph, the range dependent amplitude variations are largely
eliminated. This demonstrates the practical effectiveness of the
correction method.

The second experiment serves as a reference to be compared to
the direct field data based approach. Only the isolated
reflections from the homogenously reflecting spheres are used
to fit a polynomial. Figure 5 illustrates the resulting curve as
well as the distribution of the original and the corrected
amplitudes. It can be clearly seen that the shape of the curve and
the location of the maxima and minima match the curves
derived from the complete dataset (compare Figures 2 and 3).
This is an indication for the quality of the direct field data based
correction. Moreover, the limitation to equal reflectors results in
a much smaller local variance of the amplitudes below and
above the curve. It allows a more distinct fit of the polynomial.
The remaining local variation can be explained in large part by
mixing spheres from different plots and being scanned at
different times and places. In this context, Kaasalainen et al.
(2008) and Kaasalainen et al. (2010) point to the influence of
varying background noise, temperature and moisture. Another
disturbing factor might be the strongly unequal number of
reflections on the spheres depending on their distance from the
scanner.
I n Figure 6, the polynomial derived from isolated spheres is
applied to the complete field data. The distribution of the
corrected field data in the lower graph is comparable to the
corrected field data from the first experiment. Due to the higher
mean amplitudes of the spheres, the polynomial results in a shift
on the y-axis while the general shape is preserved. This
indicates again that fitting the polynomial directly to the
complete point cloud provides sound results and at the same
time simplifies the workflow.
The statistical metrics of RMSE and NRMSE as provided in
section 3.2 are relatively low and refer to a good fit of the
polynomial to the amplitudes from the spheres. Höfle (2014) is
one of the few authors providing quality metrics and
experimental settings similar to our experiments. The main
difference is that he uses homogenous ground areas from an
agricultural application as relative references. While the course
of the overall trend of his dataset differs strongly from the
present data, the reported optimal degree of the polynomial is
the same. The RMSE for all reflections in his study is 0.0229
whereas the present study achieves a significantly smaller error
of only 0.0156. Both RMSEs are made comparable by
normalizing the dataset with the maximum value. The numbers
reveal that the reference source of highly reflective spheres
could be superior to the extraction of homogenous areas of the

Figure 5. Top: Distribution of the original amplitude over range
for all spheres on all plots. The reflections of each sphere have
been averaged. The line visualizes the polynomial of optimal
degree fitted to the distribution of amplitudes. Bottom: The
distribution of amplitudes after polynomial correction.

Figure 6. Amplitude correction of the complete scan point cloud
using a polynomial derived from spheres. Top: Original
amplitudes with blue line visualizing the polynomial from
spheres. Bottom: Amplitudes corrected with the polynomial
from spheres.
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environment. Another practical advantage of the spheres is that
they are used by default for any scan campaign, while large
homogenous areas do not exist in sufficient quantity in complex
environments such as forests.
The lower part of Table 1 lists the CVs for the spheres derived
amplitudes and the complete point cloud corrected by the
spheres polynomial. Since the maximum available distance for
spheres is 25 m, the CVs of the first experiment are recomputed
for this reduced distance. The values in the table reflect the low
variation of the isolated spheres amplitudes. Surprisingly, when
applying the spheres polynomial to the complete dataset, the
difference in variation between corrected and uncorrected
amplitudes remains very small. Compared to the first
experiment this might be explained by stronger generalization
due to much less spheres reflections being available for
polynomial fitting. Though, a visualization of the colour coded
amplitudes corrected by the spheres polynomial does not
noticeably differ from the direct field data correction in the
lower graph of Figure 7.

Experimental
setting

C o e f f i c i e n t o f
variation (original
amplitude)

C o e f f i c i e n t o f
variation (corrected
amplitude)

Full range of 100m

Polynomial from
complete point
cloud

0.0926 0.0825

Binned means of
complete point
cloud

0.0926 0.0813

Reduced range of 25 m

Polynomial from
complete point
cloud

0.0963 0.0837

Binned means of
complete point
cloud

0.0963 0.0831

Polynomial from
isolated sphere
reflections

0.0476 0.0174

Spheres derived
polynomia l to
complete point
cloud

0.0963 0.0936

Table 1. Comparison of the coefficients of variation before and
after correction of the amplitudes. The coefficients are listed for
different experimental settings. The upper part of the table
shows values for the full data range of 100 m and the lower part
is limited to 25 m, which is the maximum distance of the
spheres.

Generally, all presented indications confirm the quality of the
direct correction of the complete field data as described in the
first experiment. Results show no visible inaccuracies in
comparison to the reference from isolated spheres. The direct
method achieves full automation and does not require any
calibration targets. From the two approaches being tested, the
polynomial approach is preferred since it provides stable results
on all of our scans while not being prone to overfitting. Since
the curve of the trend exhibits the same typical pattern over all
scans and plots, we assume that it is specific for this model of

scanner. This justifies the option to apply the optimized
polynomial to all scans from all plots and reinforces the
application oriented character of the methodology. The only
preassumption for the described method is a homogenous
distribution of objects and materials over range for each scan.
This assumption is required to minimize the effects of object
induced local variances on the global trend. For scan settings in
most forest stands, the pre-condition should be fulfilled
sufficiently. Materials and objects such as wood, soil, green
leaves and needles occur equally at all distances from the
scanner. For practical application, a roughly equal distribution
should be sufficient. Furthermore, the range dependent
distribution disregards the direction in which objects occur.

5. CONCLUSIONS

The research objective of this study was to develop a method
for intensity correction directly with the TLS field data. The
focus is on practical usability and applications in forestry. In
this context, a relative correction which provides visually
sufficient compensation of range and device dependent
variation is intended. The experiments in this study are founded
on basic techniques partly used by other authors but with the
difference that neither a special calibration setting nor the

Figure 7. 3D plot of a single scan point cloud. The circular
structure in the centre without points is the location of the
scanner. Amplitudes are colormapped. Top: Uncorrected
amplitudes with original values. Amplitudes are highly range
dependent. Bottom: Amplitudes corrected by polynomial and
values centred at 1000. Range dependency is largely eliminated.
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extraction of homogenous reference structures from the scan
environment are required. This guarantees independency and a
high degree of automation. The only pre-condition for the
described methodology is a relatively homogenous distribution
of objects and materials over range. For most forestry
applications, this is fulfilled to a sufficient degree.
The presented results suggest that fitting a polynomial of
optimal degree directly to the complete point cloud should be
the preferred variant of the methods described. This avoids
overfitting in comparison to the binned means variant and
requires less effort than extracting points from registration
spheres on the plot. Also, the graphical plots, the coefficients of
variation and the visualization of colour coded amplitudes
support this conclusion.
For future research, a comparison with absolute calibration
targets would be interesting. This could reinforce our
observations with more quantitative evidence.
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