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ABSTRACT: 

 

This paper presents a methodology for the attribution and characterisation of Sclerophyll forested landscapes over large areas. First 

we define a set of woody vegetation data primitives (e.g. canopy cover, leaf area index (LAI), bole density, canopy height), which are 

then scaled-up using multiple remote sensing data sources to characterise and extract landscape woody vegetation features. The 

advantage of this approach is that vegetation landscape features can be described from composites of these data primitives. The 

proposed data primitives act as building blocks for the re-creation of past woody characterisation schemes as well as allowing for re-

compilation to support present and future policy and management and decision making needs. 

 

Three main research sites were attributed; representative of different sclerophyll woody vegetated systems (Box Iron-bark forest; 

Mountain Ash forest; Mixed Species foothills forest). High resolution hyperspectral and full waveform LiDAR data was acquired 

over the three research sites. At the same time, land management agencies (Victorian Department of Environment, Land Water and 

Planning) and researchers (RMIT, CRC for Spatial Information and CSIRO) conducted fieldwork to collect structural and functional 

measurements of vegetation, using traditional forest mensuration transects and plots, terrestrial lidar scanning and high temporal 

resolution in-situ autonomous laser (VegNet) scanners. 

 

Results are presented of: 1) inter-comparisons of LAI estimations made using ground based hemispherical photography, LAI 2200 

PCA, CI-110 and terrestrial and airborne laser scanners; 2) canopy height and vertical canopy complexity derived from airborne 

LiDAR validated using ground observations; and, 3) time-series characterisation of land cover features. 

 

1. Accuracy targets for remotely sensed LAI products to match within ground based estimates are ± 0.5 LAI or a 20% maximum 

(CEOS/GCOS) with new aspirational targets of 5%). In this research we conducted a total of 67 ground-based method-to-method 

pairwise comparisons across 11 plots in five sites, incorporating the previously mentioned LAI methods. Out of the 67 comparisons, 

29 had an RMSE ≥ 0.5 LAIe. This has important implications for the validation of remotely sensed products since ground based 

techniques themselves exhibit LAI variations greater than internationally recommended guidelines for satellite product accuracies. 

2. Two methods of canopy height derivation are proposed and tested over a large area (4 Million Ha). 99th percentile maximum 

height achieved a RMSE of 6.6%, whilst 95th percentile dominant height a RMSE = 10.3%. Vertical canopy complexity (i.e. the 

number of forest layers of strata) was calculated as the local maxima of vegetation density within the LiDAR canopy profile and 

determined using a cubic spline smoothing of Pgap. This was then validated against in-situ and LiDAR observations of canopy strata 

with an RMSE 0.39 canopy layers. 

3. Preliminary results are presented of landcover characterisation using LandTrendr analysis of Landsat LEDAPS data. kNN is then 

used to link these features to a dense network of 800 field plots sites. 

 

 

 

1 Background 

State and Commonwealth land management agencies are 

mandated by the Australian National Forest Policy Statement 

(1992) to map and report Australian native woody vegetation 

condition i.e. extent, configuration and health. This is currently 

achieved at a state level using networks of inventory plots. For 

example, Victoria has a network of 786 0.04 ha permanent 

inventory plots which are revisited on ~5 year rotation. These 

plots are located in state forest and national parks (Department 

of Environment and Primary Industries, 2013). Utilising the 

field inventory data in conjunction with Aerial Photo 

Interpretation (API) techniques, estimates of forest extent have 

been produced (Mellor et al., 2012).  

More recently, Airborne Light Detection and Ranging (LiDAR) 

data has been acquired for the assessment of specific local 

areas, providing accurate estimates of vegetation structure 

(Stone and Haywood, 2006; Quadros et al., 2011). Such 

datasets have been used for large-area assessment in 

combination with synoptic satellite data. However, there 

remains a lack of standardised, accurate and affordable 

operational procedures to characterise the woody vegetation at 

the large area scale.    
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2 Data primitives 

The choice of woody vegetation fundamental descriptors 

consisted of three steps: 

(i) A set of descriptors were selected based on international 

directives, namely the Committee on Earth Observation 

Satellites (CEOS) Essential Climate Variables (ECVs) and the 

indicators selected by the Montreal Process Working Group 

(Montreal Process Implementation Group for Australia and 

National Forest Inventory Steering Committee, 2013). 

(ii) The set of descriptors were sent to 70 end users from 

Australian and New Zealand academic, industrial and 

governmental sectors. Each participant responded a survey 

ranking the list of indicators according to importance (Axelsson 

et al., 2012). 

(iii) A workshop was held with Australian state and federal 

agencies prioritise and select from the 99 of the highly ranked 

descriptors. In this workshop, federal agencies (DAFF and 

ABARES) and state agency representatives from Victoria, New 

South Wales and Queensland met to take a decision about the 

descriptors that were more relevant for their needs. From the 

end-user survey, tree height, forest condition, canopy fractional 

cover and the vertical canopy profile were ranked as the most 

useful forest descriptors. 

 

3 Study sites 

Within Victoria three 25 km2 sites were chosen (Table 1). These 

sites were selected as representative of major Victorian forest 

types. The study sites are also now part of the validation 

network established by the Auscover facility 

(www.auscover.org) of the Terrestrial Ecosystem Research 

Network (TERN) in collaboration with the Victorian 

Department of Environment, Land, Water and Planning 

(DELWP). The first site is located in a Box-Ironbark forest in 

central Victoria (36.74S, 144.96E) and is dominated by Red 

Ironbark (Eucalyptus tricarpa), Red Stringybark (Eucalyptus 

macrorhyncha) and Red box (Eucalyptus polyanthemos) where 

trees reach a maximum height of 25 metres and the understorey 

layer is very sparse. The study site is located in the Victorian 

Midlands Interim Biogeographic Regionalisation for Australia 

bioregion (IBRA, Australian Department of Sustainability, 

Environment, Water, Population and Communities). The second 

site is a wet sclerophyll forest (Southeast Highlands IBRA 

bioregion) where vegetation cover is dense, predominantly 

consisting of a tall dominant canopy and shade tolerant strata 

(37.69S, 145.68E). Species comprise mature stands of 

Mountain Ash (Eucalyptus regnans), Shining Gum (Eucalyptus 

nitens) and Alpine Ash (Eucalyptus delegatensis). The third 

study site is a Dry Sclerophyll forest characterised by high 

species diversity and is located in South East Corner bioregion 

(37.48S, 148.33E). The terrain is undulating creating unique 

vegetation communities, such as shrubby dry forest on the 

upland slopes, wet forest at higher altitudes and grassy 

woodland or dry forest in river valleys. 

 

 

  

4  LAI 

Accuracy targets for remotely sensed LAI products to match 

within ground based estimates are ± 0.5 LAI or a 20% 

maximum (CEOS/GCOS) with new aspirational targets of 5%). 

In this research we conducted a total of 67 ground-based 

method-to-method pairwise comparisons across 11 plots in five 

sites, incorporating the previously mentioned LAI methods. Out 

of the 67 comparisons, 29 had an RMSE ≥ 0.5 LAIe. This has 

important implications for the validation of remotely sensed 

products since ground based techniques themselves exhibit LAI 

variations greater than internationally recommended guidelines 

for satellite product accuracies. 

 

5 Canopy height and strata derivation 

A multi-scale remote sensing approach was taken, where plot 

scale measurements were up-scaled to attribute large areas.  

Initially, LiDAR derived metrics applicable at the plot scale 

were tested at the three 5 km x 5 km study areas -where forests 

cover a broad range of structural types.  Results indicate 

existing metrics of canopy height were applicable across the 

range of forest types, for example the 95th percentile of LiDAR 

derived height estimated inventory measured canopy height 

with a RMSE of 12% (~5 m).  An existing mixture modelling 

technique to attribute the canopy height profile was found 

unsuitable when applied across heterogeneously forested 

landscape.  This was due to the inability to parameterise the 

model correctly without a priori knowledge of forest structure 

e.g. presence or absence of shade tolerant layers.  For this 

reason a new technique was developed utilising a nonparametric 

regression of LiDAR derived gap probability that generalised 

the canopy profile.  Taking the second derivative of the 

regression curve identified locations within the canopy that 

correspond with canopy strata, this therefore allowed a dynamic 

attribution of canopy vertical structure.  Model output was 

validated with a crown volume modelling approach at 24 plots, 

where crown models were parameterised with inventory data 

and allometry.  Results indicate this technique can estimate the 

number of canopy strata with a RMSE of 0.41 strata.  

Furthermore, the new technique met the transferability criteria, 

as a universal regression coefficient was transferable between 

forest types with different structural attributes.   

As LiDAR acquisitions that cover large areas will inevitably 

encounter a range of forest types, parameters for attributing 

canopy structure that were transferable between forest types 

were investigated; in particular sampling frequency.  To 

effectively assess a range of pulse densities would require repeat 

capture over a study area at a range of flying heights, which 

would be prohibitively expensive.  For this reason a new 

technique was developed that systematically thinned point 

clouds.  This technique differs from previous approaches by 

allowing simulation of multi-return instruments as well as 

repeat capture of the same plot.  Six sites from around Australia 

were utilised which covered a broad range of forest types, from 

open savanna to tropical rainforest.  For a suite of metrics, the 

ability of progressively less dense point clouds (4  – 0.05 pl m-

2) to estimate canopy structure was estimated by comparison 

with higher density data (10 pl m-2).  Results indicate that 

canopy structure can be adequately attributed with data captured 

at 0.5 pl m-2.  When pulse densities are <0.5 pl m-2, the 

inability to adequately identify ground resulted in poor metric 

estimation, this was particularly evident in high biomass forest.  

Conversely at lower pulse densities in savanna  systems, the 

inability to characterise sparse vegetation resulted in poor 

attribution of the canopy profile.  

Techniques derived at the plot scale were then applied to 

estimate canopy height across 2.9 million hectares of 

heterogeneous forest.  Canopy height in the study area ranged 

from 0 – 70 m and comprised forest types from open woodland 

to tall closed canopy rainforest.  LiDAR derived canopy height 

was used to train ensemble regression trees (random forest), 

where predictor datasets included synoptic passive optical 

imagery and other ancillary spatial datasets, such as Landsat 
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TM and MODIS.  Results suggest canopy height can be 

estimated with a RMSE of 30% (5.5 m) when validated with an 

independent inventory dataset.  This is a similar error to that 

reported in previous studies for less complex forests and is 

within the European Space Agency target for canopy height 

estimation.  However, model output did show a systematic 

error, where the height of short and tall forests were over and 

underestimated respectively.  This was corrected by subtracting 

a modelled estimate of error from the random forest output.  

Production of a canopy height map over a large area allowed for 

a consistent product that covered a broad range of forest types, 

derivation at a 30 m resolution allowed the identification of 

landscape features such as logging coupes.  The presented 

technique utilised an open source computing framework as well 

as freely available predictor datasets to facilitate uptake of by 

land management agencies and forest scientists. 
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Table 1. Description of the three study sites 

Site Abbreviation Description Dominant forest type* (>10% of study area) Canopy height Annual rainfall (1981 – 2010 mean)^ 

Low open woodland LOW Short and open forest with low canopy 

density and shrubby understorey.  

Some evidence of pasturalisation and 

surface mining 

Heathy Dry Forest, Box Ironbark Forest <30m 583.9 mm 

Mixed species forest MSF Mixed species forest of moderate 

height (number of species ~70) 

Riparian Forest, Damp Forest, Shrubby Dry 

Forest 

20 – 50 m 833.4 mm 

Tall closed forest TCF Very tall, dense, high 

productivity forest (Keith et al., 

2009) predominantly consisting 

of regrowth from 1939 fire 

except in localised protected 

areas where pre-1939 patches of 

forest still remain (Lindenmayer 

et al., 2000). 

Montane Wet Forest, Wet Forest, Riparian 

Forest, Cool Temperate Rainforest, Montane 

Damp Forest 

20 – 90 m 1122.0 mm 

* As defined by ecological vegetation classes (Department of Environment and Primary Industries, 2013) 

^ Bureau of Meteorology (2014) 

 

 

Figure 1. Canopy height derived from Landsat and MODIS satellite imagery using ensemble regression tree methods. 
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