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ABSTRACT: 

This research was conducted to derive forest sample plot inventory parameters from terrestrial LiDAR (T-LiDAR) for estimating 

above ground biomass (AGB)/carbon stocks in primary tropical rain forest. Inventory parameters of all sampled trees within circular 

plots of 500 m2 were collected from field observations while T-LiDAR data were acquired through multiple scanning using Reigl 

VZ-400 scanner. Pre-processing and registration of multiple scans were done in RSCAN PRO software. Point cloud constructing 

individual sampled tree was extracted and tree inventory parameters (diameter at breast height-DBH and tree height) were measured 

manually. AGB/carbon stocks were estimated using Chave et al., (2005) allometric equation. An average 80% of sampled trees were 

detected from point cloud of the plots. The average of plots values of R2 and RMSE for manually measured DBHs were 0.95, 2.7 cm 

respectively. Similarly, the average of plots values of R2 and RMSE for manually measured trees heights were 0.77, 2.96 m 

respectively. The average value of AGB/carbon stocks estimated from field measurements and T-LiDAR manually derived DBHs 

and trees heights were 286 Mg ha-1 and 134 Mg ha-1; and 278 Mg ha-1 and 130 Mg ha-1 respectively. The R2 values for the estimated 

AGB and AGC were both 0.93 and corresponding RMSE values were 42.4 Mg ha-1 and 19.9 Mg ha-1 respectively. AGB and AGC 

were estimated with 14.8% accuracy.  

1. INTRODUCTION

There is a growing need of accurate and effective methods for 

estimating forest biomass/carbon stocks to meet the 

requirements of both Kyoto Protocol and UN-REDD 

programmes (Castedo et al., 2012). The REDD+ Measurement, 

Reporting and Verification (MRV) requires accurate and 

precise estimates, a large number of reference plots must be 

established, which inevitably increases the time and effort and 

expense of the method.  

The use of remote sensing techniques is critical for assessing 

fine-scale spatial variability of tropical forest biomass/carbon 

stock over broad spatial extents (Clark et al., 2011). Most 

exiting methods, which include indirect and direct measurement 

techniques, are limited in their capability to acquire accurate 

and spatially explicit measurements of forest tree-dimensional 

structural parameters.  

The accuracy of ground-based forest inventory depends on 

many factors: the selection of locations to be surveyed, the 

number of points or plots to be surveyed, the skill level of 

individuals conducting the survey, type of equipment used, and 

data analysis methods. Apart from these, it also depends upon 

the forest canopy characteristics (for example, dense, sparse, 

open, closed or overlapping). Therefore, there is a need for the 

development of a new method for ground inventory that is more 

accurate, fast, reliable, more objective, less expensive, and 

operational than the conventional methods used to date.  

T-LiDAR provides a noble solution for collecting reference data 

in any forest environment (Liang et al., 2012). T-LiDAR is one 

of the rapidly growing interests in photogrammetry as an 

efficient technology for fast and reliable characterization of 3D 

forest canopy via point cloud data acquisition (Tansey et al., 

2009). The main advantages lie in its potential to improve the 

accuracy and efficiency of field inventories and to provide 

additional features for forestry applications.  

Recent advances in T-LiDAR technology have made LiDAR 

data widely available to study vegetation structure 

characteristics and forest biomass. It may provide an alternative 

for the permanent sample plot method for ground-based forest 

inventory. T-LiDAR demonstrates promises for objective and 

consistent forest metric assessment, but further work is still 

needed to refine and develop automatic feature identification 

and data extraction techniques (Hopkinson et al., 2004).  

Most of the work on application of T-LiDAR has focused on 

conifer, temperate broadleaf and plantation forests, while less 

research is conducted in tropical forests that containing very 

diverse canopy species (Drake et al., 2002). This study was 

conducted to explore the potentiality of T-LiDAR to measure 

forest plot inventory parameters in tropical forest. The specific 

objectives of the study was (i) to detect trees manually from T-

LiDAR point cloud data; (ii) to manually derive plot inventory 

parameters (i.e. DBH and tree height); (iii) to compare the 

accuracy of manually derived parameters and (iv) to estimate 

above ground biomass (AGB)/carbon and assess accuracy.  
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2. STUDY AREA

The study area was located at the Belum State Park (RBSP), 

which is situated in the north of Perak State in Malaysia. The 

location of the study area in RBSP is shown in the Figure 1. The 

major land cover types of the study area were forest, and water. 

The majority of the forest species were characteristic of the 

tropical rainforest that in the Peninsular Malaysia. The main 

forests types belonged to the Dipterocarpaceae family which 

included tree species of Syzygium, Vatica, Mastixia trichotoma 

Blume, Pimelodendrom,  Koompassia Malaccensis, 

Trypanosoma and others.  

Figure 1. Map showing location of the study area (inset, 

location in Malaysia) 

3. METHODS

Figure 2. Flow diagram of research methods 

The major three activities were carried out for conducting this 

research. They were field data collection, data analysis, and 

biomass and carbon estimation. In the field, both biometric data 

and T-LiDAR point cloud data were collected. In biometric 

data, tree species, height, DBH, crown base height, crown 

diameter and plot crown density were recorded from direct 

observations. Point cloud data was collected using RiEGL VZ-

400 T-LiDAR. RiSCAN PRO software was used for pre-

processing, registration of multiple-scans, and manual 

measurement of tree parameters. Above ground biomass and 

carbon were estimated using allometric equation from both field 

observed and T-LiDAR derived DBH and tree height. 

Comparison among plots level inventory parameters, and 

AGB/carbon derived from T-LiDAR data and field 

measurements were done in RStudio. The research 

methodology is summarized in flow diagram of the research 

methods in Figure 2.  

3.1.  Plot delineation and T-LiDAR data acquisition 

3.1.1. Plot establishment 

After identification of plot, central scan positions were located 

such that there was minimum occlusion in the scanning. The 

trees very close to the plot centre, cause large area behind it to 

be in its shadow (Liang et al., 2012). The central positions were 

marked on the basis of ocular judgment. Since most of the plots 

were on sloping terrain, the central position was located such 

way that there was suitable and enough space for placing three 

outer scan positions. Some undergrowth in line of reflectors was 

cleared to get clear view from all four scan positions. Clearing 

also minimizes occlusion and gives a good scan of the bole of 

tree. All identified trees were marked with number tag as shown 

in Figure 3.  

3.1.2. Placing reflectors 

Twelve cylindrical and four circular reflectors were placed in 

each plot. All the plots were full of undergrowths, and therefore 

sticks were used to place cylindrical reflectors. Between each 

central and outer scan position four cylindrical reflectors were 

placed in such a way that they were visible from both position. 

The main purpose of using of cylindrical reflectors is to register 

the outer scan position to the centre scan position. Circular 

reflectors were placed randomly on marked tree stem facing 

towards centre scan position as shown in Figure 3. The circular 

reflectors were used for georeferencing of the plot.  

Figure 1. A sample plot photograph showing arrangement of 

reflectors and tree tagging  

3.1.3. T-LiDAR data acquisition 

Each forest sample plot was scanned with Riegl VZ-400 

terrestrial laser scanner. Multiple-scans, one in centre and three 

outside the plot, were carried out to avoid possible occlusion 
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from surrounding vegetation as shown in Figure 4. In 

comparison to single scan mode, the multiple san mode give 

much more details of the scene but it takes more time for data 

acquisition and processing (Bienert et al., 2006). The scanning 

resolution of approximately 1 cm at a distance of 10 m was 

selected, because this is enough to distinguish small vegetation 

features like small branches and leaves (Feliciano et al., 2014). 

The following steps were followed to scan the sample plots. 

Figure 4. Multiple scan mode (Bienert et al., 2006) 

3.1.3.1. Fixing scan positions 

At first central scan position was determined and from that 

point outer three scan positions were marked. Proper 

distribution of the 3 outer scans position with respect to the 

central position and circular plot was maintained in such a way 

that the angles between two out scans with the centre was 

around 120 degree (Figure 4). Tripod was placed on each scan 

position and the centre point was marked on the ground and 

GPS reading of the scan position was taken.   

3.1.3.2. Setting T-LiDAR 

After placing T-LiDAR on the tripod, camera was mounted on 

the top. Then level of the T-LiDAR was checked and legs of 

tripod were adjusted to minimize the roll and pitch of the TLS 

and instrument was set according to the technical specification 

given in Table 1.  

Beam divergence 0.35 mrad 

Minimum range 1.6 m 

Pulse recetition 

rate 

300 kHz 

Azimuth range 0°-360° (0.06° angular sampling) 

Zenith range 30°-130°  (0.06° angular sampling) 

Acquisition time 1 min 23 s 

Table 1. Riegl VZ-400 scanner settings for data acquisition 

 3.1.3.2. Fixing scan position and scanning 

New project was set for each plot. Within the plot, each scan 

was saved as new scan-position. After that instrument was set 

for pulse ranging scan. Scanning was done at each position.  

3.1.3.3. Fine scanning of reflectors 

Fine scanning of reflectors is necessary for automatic 

registration of multiple-scans. For fine scanning, first automatic 

searching of reflectors were done. After that reflectors were 

identified and marked manually by locating on scanned data. 

Then fine scanning of marked reflectors were done 

automatically by setting the scanner in fine scanning mode.  

3.2 Biometric data collection 

Plot inventory data (DBH and tree height) of  all trees within 

the sample plots were collected through direct observations. 

According to Brown, (2002), trees below 10 cm DBH 

contribute little to the total biomass of forest. Therefore, only 

trees having 10 cm or more DBH were measured. A diameter 

measuring tape was used to measure DBH of each tree at 1.3 m 

height above the ground. In addition, other important 

observations i.e. aspect, slope, and exposure were recorded. In 

the case of buttresses  at 1.3 m, DBH was measured just at the 

end point of the buttresses. In the case of forked trees, if the 

fork was below the DBH, both trunks were measured as 

individual tree. The DBH reading was recorded up to millimetre 

accuracy so that it can be compared with T-LiDAR derived 

DBH. Laser range finder (Leica DISTO D5) was used to 

measured height of trees. The reading of height was recorded up 

to centimetre accuracy.  

3.3. Manual extraction of inventory parameters 

3.3.1. Pre-processing and multiple scans registration 

RiSCAN PRO v1.8.1  software was used for pre-processing of 

scanned point cloud data. The scanned file was imported as a 

new project using 'Download and Convert' wizard of help 

menu. All the three outer scan positions were registered to the 

central scan position using tie-points. The common tie-points 

between two scan positions were automatically identified by the 

program and were registered. An example of registered plot is 

shown in Figure 5. The scans from four positions have been 

displayed in fuchsia, yellow, aqua, and lime colour. The black 

colour is shadow area due to occlusion. To minimize the error 

in registration of multiple scans, 'Multi-Station Adjustment' was 

done. The error of multiple registration of plot varies from 

11mm to 35 mm with an average of 16 mm for the 24 sample 

plots  .  

Figure 2. Registered point cloud data from four scan positions 

of a sample plot is shown with different colour 
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3.4. Manual extraction of individual tree 

The registered point cloud data of sample plots were processed 

in RiSCAN PRO software for manual extraction of individual 

tree. Tree tag numbers were used to identify the individual tree. 

All point cloud representing the individual tree were separated 

from sample plot data using selection tool. The selection of all 

point cloud data associated with a single tree was performed by 

locating each marked individual tree stem within the entire plot 

point cloud and then selecting the vertical area corresponding to 

maximum crown diameter and tree height. In most cases the 

selected point cloud often included portions of canopy from 

surrounding trees. The individual tree point cloud data of all 

sample trees were visually inspected, and outlying point cloud 

were deleted. An example of extracted point cloud data of a tree 

was show in Figure 6. The manual extraction of individual trees 

was a time consuming task.  

Figure 6. An example of extracted point cloud data of a tree 

3.5. Manual measurement of DBH and tree height from T-

LiDAR data 

The Diameter at Breast Height (DBH) is defined as the diameter 

of the stem at 1.3 m above plane ground at base of a trunk. It 

was measured using distance measuring tool in RiSCAN PRO 

software. The tree height was measured in CloudCompare by 

box fitting in each tree as shown in the Figure 7. 

Figure 7. Tree height measurement by box fitting in 

CloudCompare software 

4. RESULT AND DISCUSSION

4.1 Tree species distribution 

The forest of Royel Belum State Park is a protected primary 

forest having dominant species belonging to dipterocarpaceae 

family. Shorea, Hopea, Dipterocarpus and Vatica are the largest 

genera found in the study area. Biometric data was collected 

from 24 sample plots from area of 1.2 hectare of forest among 

which total of 59 tree species were recorded. Around 62% of 

forest area is covered by seven major species, among them 15% 

by Syzygium species, 13% by Vatica species, 9% by Mastixia 

trichotoma Blume, 7% by syn. Acacia greggii, 7% 

Pimelodendrom species, 7% by Koompassia Malaccensis and 

6% Trypanosoma species. The details of forest species 

distribution are shown in Figure 8.  

Figure 8. Species distribution in the study area 

4.2 Tree detection and accuracy assessment 

To assess the accuracy of trees detected from point cloud data, 

manually detected trees per plot were compared with respect to 

field observations. The tree extraction percentage in plots were 

varied from 69 to 100 as shown in Figure 9. An average 89 % 

of the field observed trees were detected from the point cloud 

data. In the plots 2, 7, 9, 12, and 14 all the sample trees were 

identified and detected, while in other plots less number of trees 

detected. The main causes of lower tree detection rate in other 

plots were occlusion (Figure 12) due to high stem density and 

the presence of undergrowth. Some tags were not identified due 

to occlusion. These results are similar to the results of Othmani 

et al., (2011). They got an average detection rate of 90.6% with 

single scan using the Computree algorithm.  

Figure 9. Manual detection rate of trees per plot 
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4.2 DBH measurements and accuracy 

Regression analysis was done to compare the relationship 

between field observation and T-LiDAR derived DBH. The 

scattered plots are shown in Figure 10.  

The lowest value of R2 was 0.69 in plot 27 and the highest value 

was 0.99 in plots 6, 7, 9, 10, 16, 17, 20, 24, and 26. The plots 5, 

21, and 25 have outliers which had decreased the overall value 

of the plots. These outliers were due to occlusion (Figure 14) 

due to high stem density and undergrowths.   

The average value of R2 of all plots was 0.95, which is very 

high reasonable estimate for the manual measurement of tree 

DBH from 3D point cloud data with an average RMSE value of 

2.7 cm.  

Several studies have similar results which support the findings 

the this study. Hopkinson et al., (2004) found R2 value 0.85 and 

regression slope value 1.01 for DBH in deciduous forest. In a 

similar study conducted by Tansey et al., (2009), RMSE values 

between 1.9-3.7 cm was found. In a study conducted by 

Kankare et al., (2013) in Scots pine and Norway spruce stands, 

R2 value 0.95 and RMSE value 1.48 cm were obtained by 

manual measurement. Similarly, Maas et al., (2008) obtained 

RMSE value 1.8 cm for DBH measurement in inventory plots 

from Spruce and Beech forests. According to them T-LiDAR 

has limitations to use in natural forest having dense 

undergrowths in comparison to plantation forest with less 

complex structure and sparse ground vegetations.  Tansey et al., 

(2009), reported a similar figure for RMSE values of 3.7 and 

1.9 cm computed by cylinder-fitting and circle-fitting. Watt & 

Donoghue, (2005), found R2 value 0.92 by circle fitting in 

conifer plantation forest.  

Thus, the values of R2 and RMSE for DBH measurements by 

manual methods from T-LiDAR data are consistent with many 

previous studies conducted in temperate forest, which shows 

that DBH can be estimated from point cloud data with good 

accuracy in tropical forest too.   

Figure 10. Plot level comparison between  DBHs from field and T-LiDAR data 
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4.3  Tree height measurements and accuracy 

Regression analysis was done to compare the relationship 

between field observed and manually measured tree heights 

from T-LiDAR data. The scattered plots are shown in Figure 

11.  

The lowest value of R2 is 0.38 for plot 5 and the highest values 

is 0.99 for plot 22. The plots 3, 14, 15, 22 and 24 have R2 values 

higher than 0.90, while other plots have lower values due 

outliers. The average value of R2 of all plots is 0.77, which is a 

reasonable estimate for the manual extraction of tree height 

from 3D point cloud data for AGB and AGC estimation with an 

average RMSE value of 2.96 m.  

In this study average manual measurement of tree height was 

overestimated by approximately 8% in compared to the field 

measurement. But in a similarly study by Hopkinson et al., 

(2004), they found R2 value 0.86, and regression slope 1.08 for 

deciduous forest. In their study, the tree height was 

underestimated by 7% in comparison of field measured height. 

According to them intervening foliage obstructing the view 

which leads to leads to systematic under estimation of tree 

height  derived by T-LiDAR. Thus, this study contradicts with 

the finding of Hopkinson et al., (2004), and shows that tree 

height can be measured more accurately in comparison to field 

measurement.  

The main causes of outliers are occlusion and overlapping 

crown in upper canopy of the trees (Figure 14). Due to 

overlapping crown, in many cases it was impossible to separate 

whole crown of a tree, particularly for the small tree. Therefore, 

in manual extraction of individual tree from sample plot point 

cloud data, prior information about crown size is required for 

dense crown cover class forest. Thus, manual measurement of 

tree height from the T-LiDAR data is as subjective as manual 

tree height measurement in the field.   

In the tropical forest generally trees have big crown size which 

makes difficulties in locating actual peak of the tree. This 

phenomenon leads to underestimation of large tree. The reason 

for the improvement in the height measurement is may be due 

to the improvement in capacity of T-LiDAR or may be human 

error. Therefore, further research is necessary to test the 

accuracy of tree height measurement using T-LiDAR data.

Figure 11. Plot level comparison between tree heights from field and T-LiDAR data 
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4.5 Above ground biomass and carbon stocks 

AGB of the sample plots were estimated using the allometric 

equation of Chave et al., (2005). Conversion factor 0.47 was 

used to convert AGB to Carbon stock (IPCC, 2006). The details 

of ABC stocks in the sample plots are given in Figure 12. The 

AGC stocks in the plots 4, 7, and 8 are overestimated while in 

plot 6, the values is equal, and the rest of the plots are 

underestimated in comparison with field estimation. The main 

reason for overestimation is the difference in height 

measurements. The lowest stock of AGC is 37 Mg ha-1 in plot 

1 and the highest is 361 Mg ha-1 in plot 4. The average per 

hectare estimate of carbon are 134 Mg from field observation 

and 130 Mg on the basis of T-LiDAR estimation. The average 

AGC stock was under estimated by 3% from T-LiDAR  in 

comparison of field estimate.  

Figure 12. Plot comparison of AGC stocks 

Figure 13. Comparison of AGC stocks 

In the scattered plot (Figure 13), the R2 value of the estimated 

AGC stock is 0.93 and the corresponding RMSE value is19.9 

Mg per hectare. Per hectare RMSE% value for AGC is 14.8%. 

The three plots in the top have big diameter trees which make 

big difference in AGC stocks with respect to other plots. The R2 

value show that AGC can be accurately estimated with T-

LiDAR data in tropical forest. The AGC estimate from T-

LiDAR are in very reasonable agreement, because the T-

LiDAR derived DBHs and tree heights are very close to the 

field measured DBHs and tree heights. If there is an error or 

high RMSE, it is mostly because of the differences in height 

estimation which is not very accurate. A similar study 

conducted for biomass estimation by Kankare et al., (2013) in 

Scots pine and Norway spruce forest, R2 values were 0.90  and 

0.91 and RMSE values were 22.12 kg and 26 kg achieved at 

tree level.  

4.6 Sources of error 

According to Côté et al., (2011), the quality of point cloud 

obtained from T-LiDAR depends upon the amount of object 

occlusion and external factors, such as wind, rain, fog, and 

relative humidity. The occlusion is caused by the intermediate 

objects between the sensor and target object. The shadow 

causes by occlusion was main the source of error in DBH and 

tree height measurement both in field (specially tree height) and 

T-LiDAR measurement. Manual DBH measurement from T-

LiDAR data are affected by stem form (Kankare et al., 2013). 

This variation is due to noncircular shape of the trunk. The 

reading of two perpendicular diameters are not equal. In this 

study only one diameter reading at 1.3 was measured. Other 

sources of errors were shadows due occlusion on trunk portion 

of many trees as shown in Figure 14. 

In manual measurement of tree height from T-LiDAR data, 

error occurs due to overlapping crown and occlusion. In the 

case of overlapping trees, smaller trees were over estimated due 

to crown interfering of larger trees from surrounding. Similarly, 

due to occlusion the tops of the big trees are not  fully scanned 

which introduces errors in height measurements. If the whole 

crown is not scanned, it leads to underestimation of tree height. 

Similarly, due to overlapping crown it is not possible to 

separate the all point cloud data belonging to the tree, which 

introduces error in height measurement of smaller trees. In this 

cases, generally smaller trees are overestimated.  

Figure 14. Examples of occlusions: In left photograph, some 

outer part of the tree bole (black area) is not properly scanned. 

In right photograph, tree crowns and branches is not properly 

scanned. 

5. CONCLUSIONS

This study shows that T-LiDAR point cloud data can be used 

for derivation of plot inventory parameters DBH and tree height 

with reasonable accuracy for AGB/carbon estimation in tropical 

forest. In comparison to traditional direct field inventory 

method, T-LiDAR data can be acquired rapidly and is less 

susceptible to subjective judgement. However, manual 

processing is subjective, tedious and time-consuming job. 

Multiple scans of the sample plot require more time in scanning 
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and data processing, which also take more space for data 

storage. Therefore, there is a need to develop algorithms for 

automatic computation of forest inventory parameters.  
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