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ABSTRACT: 

 
The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement 

of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained 

many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate 

method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more 

critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral 

data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived 
texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 

5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, 

dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in 
two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to 

estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better 
fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The 

best offset was [1,-1].  Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based 

on derived texture metrics were able to explain about half of the variation in aboveground carbon stocks. These results demonstrated that Landsat 8 
derived texture metrics can be applied for mapping aboveground carbon stocks of coppice Oak Forests in large areas. 

 

1. INTRUDUCTION 

With a huge contribution to the global carbon (C) balance, forests 

play an important role in global carbon cycling (Wen and He, 

2016, Chen et al., 2016). Importance of understanding the C cycle 

contribution to global climate change has highlighted the 

concerns about surveying of terrestrial C stocks via methods that 

are verifiable, specific in time and space, and that cover large 

areas at acceptable cost (Boudreau et al. 2008; Krankina et al., 

2004; Patenaude et al., 2005; Muukkonena and Heiskanenb, 

2007).  

The traditional approach for estimation forest carbon stocks 

consists of field data collection and destructive methods. Despite 

the fact that this approach provides the most accurate results, it is 

costly, time consuming, labour intensive, and destructive. 

Furthermore, this approach is not applicable for large area carbon 

studies. In addition, the spatial heterogeneity of forest C stocks 

greatly increase the error of estimation obtained using field data 

(Dube and Mutanga, 2015a). 

To solve such problems, several studies have tried to evaluate 

accuracy of forest C estimation by using remotely sensed data 

(Kwak et al., 2010). The literature demonstrates that RS data is 

the best practical option to accurately and timely estimate of 

aboveground forest carbon (AGC) on large scales as well as areas 

where field surveys remain a challenge, or the area is inaccessible 

(Zhao et al., 2009; Patenaude, et al., 2004; Kwak et al., 2010; 

Dube and Mutanga, 2015a).  

Different RS data has been evaluated in many researches 

including RADAR, LiDAR and Optical data. Results 

demonstrated higher accuracy for carbon and biomass 

estimations using data provided by active sensors. However, 

LiDAR data is expensive and SAR data is only available on 

limited areas. Fortunately, medium-resolution multispectral 

Landsat 8 images with large swath width of 185-km and frequent 
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repeat cycle is freely available. Because of many advantages of 

Landsat data, it has been widely used for biomass estimation, but 

most researches have been advocated to boreal and tropical 

forests (Behera et al., 2016; Cutler et al., 2012; Fraizer et al., 

2014; Neba et al., 2014; Langner et al., 2012) and research on 

remote-sensing-based biomass estimation for other ecosystems is 

comparatively scarce (García et al. 2010). Furthermore, methods 

to select suitable variables and models from RS data for specific 

studies are still poorly understood (García et al. 2010; Lu et al., 

2014).  

The Zagros Region covers the Zagros Mountains ranging from 

northwest to southeast, from the Turkish border to the Persian 

Gulf. These forests cover an area of 5.5 million hectares 

(Valipour et al., 2014). The vegetation mostly dominated by 

deciduous Oak species, and Persian Oak (Quercus brantii Lindl.) 

is the most frequent species with the largest distribution area. 

Most trees have coppice form and human activities and fire are 

two main causes for degradation of these forests. Despite the 

importance of Zagros forests in C cycle, very little attention has 

been paid to the estimation of biomass and carbon of these 

forests. Most published RS based research in these forest is 

focused on the estimation of forest coverage and area.  

Since Landsat data are freely available, it is the most suitable data 

for aboveground carbon (AGC) estimation in non-commercial 

forests (such as Zagros Forests) located in low-income countries. 

Some literature revealed that texture metrics derived from 

multispectral data might be a better predictor of biomass than 

spectral vegetation metrics in some regions (Kelsey and Neff, 

2014; Cutler et al., 2012; Dube and Mutanga, 2015b). 

Using texture metrics derived from the Advanced Land 

Observation Satellite, AVNIR-2Sarker, Nichol (2011) estimated 

AGB with an R2
adj value of 0.88. Eckert (2012) obtained R2=0.84 

and relative RMSE of 6.8% for carbon estimates in degraded 

forest, using WorldView-2 derived texture measures. Cutler et al. 
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(2012) achieved r-square of 0.85, 81 and 86 using SAR image 

texture and Landsat TM for biomass estimates in Brazil, 

Malaysia and Thailand countries, respectively. Dube and 

Mutanga (2015b) reported R2 0.76 for estimating AGB in South 

Africa.  

This aim of this research is to explore the potential of Landsat 8 

OLI data in AGC estimation in coppice Oak forest of Zagros. 

Also, different window sizes, texture metrics, offsets, and 

spectral bands will be examined to find the most correlated data 

to AGC. 

 

2. MATERIAL AND METHODS 

2.1 Study Area 

The study area is located in Zagros forests, in the west of Iran, 

and occupies part of the Kermanshah province. Two different 

forests were selected; one of them is Sarfiruz-Abad region with 

intensive damage by human activities, and the other one is 

Gahvareh forests with minimum damage (33º57′-

34º04′N/47º03′-47º17′E & 34º21′-34º24′N/ 46º16′-46º23′ E) 

(figure 1). Both forests are dominated by Quercus brantii Lindl.   

 
 

Figure 1. The locations of two selected sites 

 

  

2.2 Sampling Design and Field Measurements 

To ensure the proper distribution of plots in full range of forest 

coverage, first, we stratified the study areas into three stratums 

based on Landsat-derived leaf area index map using global model 

presented by Myneni et al. (1997) (see Nole et al., 2009). Totally, 

124 reference plots with 30×30 meters dimensions (according to 

a Landsat pixel size) were systematically placed within two study 

sites in June and July 2015. To reduce the effect of the mismatch 

of spatial scale between the area encompassed by a measurement 

plot and the area of a remotely sensed pixel, the plots were 

selected based on the criterion that the surrounding forest 

vegetation within at least 10 m distance from the plot be the same 

as within the plot (Eckert, 2012; Eisfelder et al., 2011). The 

aboveground carbon of standing trees in inventoried plots was 

calculated using species-specific allometric functions 

(Iranmanesh, 2013).  

 

2.3 Remote Sensing Data and Processing 

The study forests are covered by one Landsat-8 OLI image 

(path/row: 167/36). One cloud-free image acquired at 25 July 

2015 was obtained from USGS Earth Resource Observation and 

Science Center archive (http://earthexplorer.usgs.gov). The 

Landsat-8 OLI image bands were converted from digital number 

format to reflectance, and then was atmospherically corrected 

using the MODTRAN based on the Fast Line-of-sight 

Atmospheric Analysis of Hypercube (FLAASH) radiative 

transfer algorithm (Matthew et al., 2000; Dube and Mutanga, 

2015b). The image was then geometrically controlled by digital 

maps that were produced by National Cartographic Center of Iran 

(http://www.ncc.org.ir/) 

 

2.4 Landsat-8 OLI Derived Textural Metrics 

The textural metrics were statistically calculated using Grey 

Level Co-occurance Matrix (GLCM) of Landsat-8 OLI bands. 

Many textural metrics can be derived from the GLCM; we used 

the nine metrics of mean, variance, homogeneity, contrast, 

dissimilarity, entropy, second moment, inverse difference and 

correlation (Wijaya et al., 2010; Eckert, 2012; Kelsey and Neff, 

2014; Dube and Mutanga, 2015b). Texture algorithms calculate 

a relative displacement vector (d,θ), which explains the spatial 

distribution of the level pairs separated by d in direction θ. In 

addition to d and θ, texture metrics are also dependent on the 

window size used to calculate the GLCM. It is important to find 

the best window size to derive the textural metrics, because a 

window that is too small may identify variations in pixel 

brightness that are irrelevant to variation of the dependent 

variable, whereas a window that is too large may overlook 

important variations in pixel brightness (Nicol and Sarker, 2011; 

Kelsey and Neff, 2014). Here, we determined the optimal 

window size by the window size that had the strongest correlation 

between texture-predicted biomass and observed biomass. In 

order to determine the optimal window size for our study, all 

texture metrics were calculated on four Landsat bands (Bands 2–

5) using four window sizes: 3×3, 5×5, 7×7, and 9×9 pixels. For 

each window size, texture was also calculated at four offsets, (θ), 

represented in Cartesian coordinates as [0,1], [1,1], [1,0], and [1–

1]. (Kelsey and Neff, 2014; Dube and Mutanga, 2015b). 

We used stepwise linear regression to model the plot level carbon 

stock based on derived textural metrics. Linear regression based 

on ordinary least squares is one of the most frequently used 

statistical approaches to model the correspondence between 

spectral and field data (Lu, 2006). Adjusted R-square and root 

mean square error (RMSE) were considered as fitting parameters 

of calculated models.  

 

 

3. RESULTS 

The results of regression analysis for modelling AGC based on 

derived Landsat 8 OLI textural metrics are presented in tables 1. 

Based on the results, for window size 3×3, the best textural metric 

was mean followed by entropy. Band 4 and 2 showed the highest 

correlation, while Band 5 showed no correlation with AGC. The 

best offset was [1,1]. 

For window size 5×5, the best textural metric was mean followed 

by entropy and contrast. Using this window size for deriving 

textural metrics resulted a better fitting parameters as well as 

higher number of correlated metrics than 3×3 window size. Band 

4 and offset [1,-1] had the highest correlations.  

For window size 7×7, the best textural metric was mean followed 

by entropy, contrast, and variance. Obviously, this window size 

had a better performance for deriving textural metrics in 

comparison to 3×3 and 5×5 window sizes. Offset [1,-1] showed 

better fitting parameters.  
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Table 1. AGBC estimates using Landsat 8 texture metrics from 

3×3, 5×5, 7×7, 9×9 window sizes and offsets [0,1], [1,0], [1,1], 

[1,-1] using stepwise linear regression 

 

Offset Image data Variable name R2
adj RMSE 

3×3 

[0,1] b2 8, 5 0.43 333.7 

 b3 8, 5 0.42 335.0 

 b4 8, 1 0.45 328.1 

 b5 8 0.03 433.6 

[1,1] b2 8, 7 0.45 328.2 

 b3 8, 5 0.43 334.2 

 b4 8, 1 0.45 326.4 

 b5 8 0.03 433.9 

[1,-1] b2 8, 5, 3 0.41 338.5 

 b3 8 0.38 348.6 

 b4 8 0.38 348.6 

 b5 8, 13 0.06 427.1 

[1,0] b2 8, 5 0.42 337.3 

 b3 8, 5 0.43 334.2 

 b4 8, 1 0.45 326.4 

 b5 8 0.03 433.9 

5×5 

[0,1] b2 8, 2, 4 0.44 329.8 

 b3 8, 5, 2, 1 0.48 318.2 

 b4 8, 1, 2, 4 0.49 314.7 

 b5 - - - 

[1,1] b2 8, 3, 6, 9 0.43 331.8 

 b3 6, 8, 2 0.60 280.5 

 b4 8, 2, 5 0.48 318.7 

 b5 3 0.08 422.7 

[1,-1] b2 7, 5, 3, 2 0.46 335.6 

 b3 8, 5, 3, 2 0.49 315.3 

 b4 8, 5, 13 0.50 313.4 

 b5 4, 9 0.14 409.3 

[1,0] b2 8, 5, 9 0.38 347.3 

 b3 8, 5 0.39 343.4 

 b4 8, 1 0.44 330.4 

 b5 - - - 

7×7 

[0,1] b2 7, 2, 9 0.44 329.3 

 b3 8, 5, 2 0.45 326.4 

 b4 8, 2, 7 0.51 310.2 

 b5 - - - 

[1,1] b2 8, 5, 4 0.39 344.6 

 b3 8, 5, 4 0.44 330.9 

 b4 8, 2, 5 0.48 319.3 

 b5 2, 4 0.19 397.2 

[1,-1] b2 8, 3, 5, 2 0.45 326.7 

 b3 6, 8, 9 0.46 322.9 

 b4 8, 1, 9, 7 0.52 306.9 

 b5 4, 9, 3 0.22 388.4 

[1,0] b2 8, 5, 9 0.37 349.4 

 b3 8, 5, 9 0.42 334.3 

 b4 8, 1, 9 0.46 325.1 

 b5 - - - 

9×9 

[0,1] b2 6, 4, 8 0.48 319.0 

 b3 5, 8, 9 0.46 323.8 

 b4 5, 2, 7 0.54 298.1 

 b5 2, 4 0.22 388.9 

[1,1] b2 8, 5, 4 0.42 336.9 

 b3 8, 5, 4 0.46 324.3 

 b4 5, 9, 8 0.53 301.7 

 b5 2, 5, 1 0.25 381.1 

[1,-1] b2 10, 8, 9 0.45 327.1 

 b3 5, 8, 9 0.49 313.9 

 b4 5, 9, 8 0.53 301.7 

 b5 6, 1 0.22 390.8 

[1,0] b2 5, 8, 9 0.40 340.7 

 b3 5, 8, 9 0.44 329.6 

 b4 5, 8, 9 0.50 312.4 

 b5 5, 2, 1, 4 0.24 385.9 
1=Ang2nd, 2=Contrast, 3=Correlation, 4=Dissimilar, 
5=Entropy, 6=Homogeneity, 7=Inverse Difference, 8=Mean, 

9=variance, The best results are shown in bold. 

 

For window size 9×9, the best textural metric was mean followed 

by entropy, contrast, and variance. This window size had a better 

performance for deriving textural indices in comparison to other 

window sizes. Offset [1,-1] showed better fitting parameters.  

Overall, the best metric was mean followed by entropy, the bets 

band was 4, the best offset was [1,-1], and the best window size 

was 9×9. 

 

4. DISCUSSION 

RS based estimates have the potential to estimate the forest 

biomass or carbon over large areas with less efforts, time and cost 

than field based estimates. In this study we explored the ability 

of Landsat 8 OLI derived texture metrics for forest carbon 

estimation in two study site of coppice Oak forest.  

Selecting suitable texture indices for biomass estimation is a 

challenging task. Because texture varies with the characteristics 

of the landscape and RS data used. Even for the same texture 

measure, selecting an appropriate window size and image band is 

crucial. Choosing a small window size for deriving texture may 

exaggerate the difference within the moving windows, while too 

large window sizes may not effectively extract information due 

to smoothing the texture variation. 

We reached the best results by using mean index derived from 

band 4 using 9×9 window size and [1,-1] offset. Overall, in our 

study the best model was able to explain about 50 percent of 

variation in the AGC. Du et al. (2010) used Landsat images and 

linear regression for modelling bamboo biomass and reported an 

R2 of 0.13. Gasparri et al. (2010) estimated the AGB and reported 

an R2 of 0.37 using Landsat data. Wijaya et al. (2010) reported a 

Pearson correlation of 0.544% for AGB estimation in Indonesia. 

Compared to our results, our study may have shown an 

improvement in the capabilities of Landsat images for AGC 

estimation. But our results are poor compare to Dube and 

Mutanga work (2015b). We examined the relationship between 

the AGC of coppice oak and texture metrics using a linear 

modelling method while they used nonlinear algorithms like 

stochastic gradient boosting. Du et al. (2010) claimed that the 

spectral responses of biophysical property are often nonlinear, so, 

some nonlinear methods such as Random Forest, support vector 

machine and etc. should be paid more attention in such contexts. 

In this study, half of the variation in AGC wasn’t explained by 

textural metrics. This might be because of geometric mis- 

registration between Landsat data and sample plots. Because of 

the size of Landsat pixels (30 meters), very precise geometric 

registration of images isn’t possible.  

On the other hand, selecting the optimal sample size is 

ambiguous. Smaller plot might result in saturation in dense leaf 

canopies, while larger sample size might smooth the variation of 

forest stands. Furthermore, there is a limitation for modelling a 

three-dimensions variable like biomass based on spectral 

reflectance, because optical sensors mainly capture canopy 

information and associated canopy shadows (Lu and Batistella, 

2005).  

Although our results showed that using textural metrics for 

mapping biomass might be a proper solution, but caution needs 
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to be taken when textures are used for estimating carbon stock in 

different sites because they are dependent on the structure of the 

forest stands and the image data.  
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