
ANALYSIS OF RELATIONSHIP BETWEEN URBAN HEAT ISLAND EFFECT AND 

LAND USE/COVER TYPE USING LANDSAT 7 ETM+ AND LANDSAT 8 OLI IMAGES 

 
N. Aslan a

 *, D. Koc-San a,b
  

 

a Akdeniz University, Faculty of Science, Department of Space Sciences and Technologies, 07058, Antalya, Turkey 

bAkdeniz University, Remote Sensing Research and Application Centre, 07058, Antalya, Turkey 

(nagihanuzen@akdeniz.edu.tr, dkocsan@akdeniz.edu.tr) 
 

Commission VIII, WG VIII/8 

 

 

KEY WORDS: UHI, Thermal Remote Sensing, Landsat 8 OLI/TIRS, MODIS, Change Detection, LU/LC 

 

 

ABSTRACT: 

 

The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the 

UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship 

between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the 

central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat 

thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. 

Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS 

nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST 

values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88% for 

both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. 

Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for 

vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6   ֯C for 2001 and 6.8   ֯C for 2014. The validity of 

the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between 

Landsat LST and MODIS LST data (r2=0.7 and r2=0.9 for 2001 and 2014, respectively). 

 

 

1. INTRODUCTION 

According to the United Nations Population Fund, more than 

fifty percent of the world's population lives in cities and this 

ratio projected to increase. Rapid urbanization affects urban 

climate and therefore, studies on the urban climate has gained 

importance. Urban Heat Island (UHI) effect causes an increase 

in the air and surface temperatures of cities and therefore this 

effect is one of the factors affecting the urban climate. The UHI 

effect can be defined as higher urban temperature values when 

compared with surrounding rural areas (Oke, 1982). Urban Heat 

Island studies are important for urban climate, urban planning 

and the health and comfort of population living in the city.  

 

The UHI effect magnitude can vary depending on the LU/LC 

pattern, city structure, city size, seasonal variations, ecological 

context, urban geometry, topography and location of the study 

area (Effat and Hassan, 2014; Imhoff et al., 2010; Lo and 

Quattrochi, 2003; Oke, 1973; Singh et al., 2014). Economic 

development, population increase, urban growth and evolving 

industry can be considered as the main reasons of urban climate 

change (Hu and Jia, 2010; Hung et al., 2006; Jin et al., 2005; 

Tayanc and Toros, 1997). UHI effect magnitude increases when 

the city size increases. Besides, UHI effect varies seasonally and 

it is more apparent in summer (Imhoff et al., 2010). The LST 

values are related with land cover types. Water and vegetation 

surfaces have the lowest surface temperatures, while urban 

surfaces such as airport, residential area, industrial areas have 

the highest surface temperatures (Feizizadeh and Blaschke, 

2013; Mallick et al., 2013). 

 

 

* Corresponding author 

Various satellites and methods are available that can be used to 

examine the LST and to determine the UHI effect. Landsat 

satellite series are the data that are most widely used for these 

studies. However, Landsat 8 OLI/TIRS satellite was launched in 

2013 and therefore, there are limited number of UHI studies in 

the literature that use this satellite images (Jimenez-Munoz et 

al., 2014; Jin et al., 2015; Rozenstein et al., 2014; Sekertekin et 

al., 2016; Wang et al., 2015; Yu et al., 2014). In the study 

conducted by Yu et al. (2014), three different methods were 

compared for LST extraction from Landsat 8 OLI/TIRS thermal 

bands which are the single channel (SC) method, the split 

window (SW) algorithm and the radiative transfer equation-

based method. According to their results, radiative transfer 

equation-based method using band 10 has the highest accuracy 

while the SC method has the lowest accuracy. In addition, their 

results show that band 11 has more uncertainty than band 10. 

Jimenez-Munoz et al. (2014), Rozenstein et al. (2014) and Jin et 

al. (2015) were proposed different SW algorithms for LST 

retrieval using the Landsat 8 TIRS image. In the study 

performed by Jimenez-Munoz et al. (2014), SC and SW 

algorithms were proposed for LST retrieval. Algorithms were 

tested and the obtained results showed that RMSE values are 

typically less than 1.5 K. Jin et al. (2015) proposed a practical  

SW algorithm and according to the results, this algorithm 

provides quite accurate and universal LST retrieval method. 

Wang et al. (2015) developed a new method which is called 

improved mono-window (IMW) algorithm for LST extraction 

from Landsat 8 TIRS band 10. They compared this method with 

SC algorithm for three main atmosphere profiles and they found 

IMW algorithm error less than the SC algorithm. Sekertekin et 

al. (2016) studied the spatiotemporal variation of UHI in 

Zonguldak city from 1986 to 2015, using the Landsat 5 TM and 

Landsat 8 OLI/TIRS imageries. In this study, Mono-Window 
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algorithm was used for estimating the LST values from thermal 

band 10 of Landsat 8 TIRS. According to the obtained results, 

the LST values were increased in time for all areas except the 

city dump. The city dump temperature decreased in 2015, 

because of the Zonguldak municipality stopped throwing away 

garbage. It was also observed that the temperatures of built-up 

areas were increased significantly.   

 

The main purposes of this study are to calculate the LST values, 

to determine the UHI effects of Antalya using multi temporal 

Landsat imageries and to examine the relationship between LST 

and different LU/LC classes. Both Landsat 7 and Landsat 8 

imageries were used in this study to reveal the UHI effect 

change during 13-year time interval. For these purposes, 

initially, the brightness temperatures are retrieved and LST 

values are calculated from Landsat thermal images. Then, 

LU/LC maps are created from Landsat images using the 

Random Forest (RF) classifier. Normalized Difference 

Vegetation Index (NDVI) image, The Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) and Defense Meteorological 

Satellite Program_Operational Linescan System (DMSP_OLS) 

nighttime lights data are used as additional bands during the 

classification procedure. Finally, UHI effect is determined and 

the LST values are compared with land use/land cover classes. 

At the end of this study, Moderate Resolution Imaging 

Spectroradiometer (MODIS) LST/Emissivity data are used to 

validate the LST results. 

 

2. STUDY AREA AND USED DATA 

In this study, central districts of Antalya, which are Aksu, 

Dosemealti, Kepez, Konyaalti, and Muratpasa, are selected as 

study area (Figure 1). Antalya is the fifth biggest city of Turkey 

and its urbanization and population growth rates are quite high. 

Its population is about 205,000 in 2000 and 1,200,000 in 2014, 

for these five districts (TODAIE, 2016). Antalya is located in 

the southern part of Turkey and it is one of the most important 

tourism centers of the country. The city has Mediterranean 

climate with hot, dry summers and mild, wet winters. The 

summer population of Antalya increases almost double.  

 

For this study, Landsat 7 ETM+ dated on June 5, 2001 and 

Landsat 8 OLI/TIRS dated on June 17, 2014 images were used 

as basic data for calculating the LST and determining the UHI 

effect. The Landsat images were provided from the USGS Earth 

Resource Observation and Science Centre (Global Visualization 

Viewer) and they have a Universal Transverse Mercator (UTM) 

coordinate system. Landsat 7 ETM+ satellite has 6 multispectral 

bands, 1 panchromatic band and 1 thermal band. On the other 

hand, Landsat 8 OLI/TIRS satellite has two new multispectral 

bands (Band1-deep blue coastal aerosol band and Band9-

shortwave infrared cirrus band) in addition to Landsat 7 ETM+ 

spectral bands. Landsat 8 OLI/TIRS satellite has 2 thermal 

bands (Band10 and Band11). However, the wavelength ranges 

of Landsat 8 OLI/TIRS and Landsat 7 ETM+ are almost the 

same for thermal region. The Band 11 of Landsat 8 is not 

recommended for using in quantitative analysis (USGS, 2013). 

Therefore, Band 10 of Landsat 8 was used in this study as 

thermal band. Besides, radiometric resolution of Landsat 7 

ETM+ images are 8 bit, while Landsat 8 OLI/TIRS images are 

12 bit (USGS, 2015). Surface UHI is more apparent during the 

day of summer (EPA, 2014). UHI magnitude was observed that 

has to be higher in the summer in review of different studies 

(Hung et al., 2006; Imhoff et al., 2010). For this reason, the 

summer images were used in our study. 

In addition to Landsat imagery, the topographic maps, ASTER 

GDEM, DMSP_OLS nighttime light data and MODIS/Terra 

LST and Emissivity data were used in this study. 1:100,000 

scaled topographic maps were used for the geometric correction 

of the Landsat images. ASTER GDEM had been produced 

using stereo pair images collected by the ASTER satellite and it 

is a joint product made by publicly available by the Ministry of 

Economy, Trade and Industry (METI) of Japan and United 

States National Aeronautics and Space Administration (NASA). 

The DMSP_OLS nighttime lights data supplies lights 

containing city, town or residential lights and ephemeral event 

lights like fires and lightning. The DMSP_OLS image includes 

valuable information for mapping urban areas and it is useful 

for separating urban and non-urban areas (Elvidge et al., 2001; 

Gallo et al., 1995; NOAA_OLS, 2012; Sutton et al., 2010). The 

DMSP_OLS nighttime lights data was acquired from National 

Oceanic and Atmospheric Administration/National Geophysical 

Data Center (NOAA/NGDC) for the years 2001 and 2013. The 

NDVI image, ASTER GDEM and DMSP_OLS nighttime light 

data in addition to Landsat 8 OLI images were used for the 

classification procedure, the thermal bands were used for 

determining the LST values. On the other hand, the 

MODIS/Terra LST and Emissivity data was used for validation. 

 

 
 

Figure 1. The false color Landsat 8 OLI/TIRS image of the 

study area and its location in Turkey. 

 

3. METODHOLOGY 

There are basically three main steps in this study, which are (1) 

pre-processing and preparation of additional bands for image 

classification, (2) LU/LC classification using RF Classifier and 

(3) calculation of the LST values and UHI effect using thermal 

images.  

 

In the pre-processing stage the Landsat images were pan-

sharpened and corrected geometrically. Later, auxiliary data, 

which are NDVI image, emissivity and enhanced DMSP_OLS 

nighttime lights data were generated. The generated NDVI 

image, enhanced DMSP_OLS nighttime lights data, and 

ASTER GDEM were used as additional bands during the RF 

classification procedure.  

 

In the RF classification procedure, firstly, data sets were created 

using the original and additional bands (Table 1 and Table 2). 

According to classification results, the data sets that provides 

the highest overall accuracies for the years 2001 and 2014 were 

used for examining the relationship between the LU/LC classes 
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and UHI values. The flowchart of the proposed UHI effect 

determination procedure is shown in Figure 2. 

 

Figure 2. Flowchart of the UHI effect determination procedure 

 

3.1 Pre-processing and preparation of additional bands for 

RF classification 

In this study, firstly, Landsat multispectral imageries were pan-

sharpened using the PANSHARP algorithm of PCI Geomatica 

image processing software. Then, the pan-sharpened Landsat 

imageries were geometrically corrected using Ortho Engine 

module of PCI Geomatica image processing software. In the 

geometric correction stage, the Landsat 8 OLI/TIRS images 

were corrected using topographic maps and its root mean square 

error was calculated less than 0.5 pixel. Afterward, image to 

image registration was performed to correct Landsat 7 ETM+ 

image geometrically using the Landsat 8 OLI/TIRS image and 

its root mean square error was calculated less than 0.5 pixel.  

 

The NDVI image shows the density of vegetation in the study 

area. This image is useful for separating vegetation from other 

LU/LC classes. NDVI image was created using Near Infrared 

(NIR) and Red (R) bands in Landsat imagery using the 

following NDVI equation (Eq.1): 

 

 NDVI = (NIR - R) / (NIR + R)                   (1) 

 

Emissivity is the radiation capability of objects and this value is 

between 0 and 1. In this study, typical emissivity value is 0.99 

for full vegetative pixels. Emissivity values were calculated 

using the below given equations (Eq. 2) (Sobrino et al., 2008); 

 

                    εsʎ                      

         εʎ =     εsʎ+(εvʎ-εsʎ)*Pv        

                    εvʎ                          

 

NDVI < NDVIs                  

NDVIs ≤ NDVI ≤ NDVIv   

NDVI > NDVIv 

 

(2) 

 

where;  

εʎ : emissivity, 

εsʎ: bare soil emissivity 

εvʎ: vegetation emissivity 

The NDVIs and NDVIv values were approved as 0.2 and 0.5, 

respectively (Sobrino et al., 2008; Sobrino and Raissouni, 

2000). 

 

Pv values are calculated according to Eq. 3 (Carlson and Ripley, 

1997); 

 

 Pv = (NDVI - NDVIs /NDVIv - NDVIs) ^2   (3) 

 εsʎ = 0.980 - 0.042 * K                                   (4) 

 

K: DN values of red band, 

εvʎ has been approved 0.99 and εsʎ and εʎ has been calculated 

using the formulas given in (Sobrino et al., 2008; Sobrino and 

Raissouni, 2000). 

 

Additionally, the DMSP_OLS nighttime lights image was 

enhanced using emissivity image, because of its spatial 

resolution is too low when compared with Landsat imagery. For 

this process, Landsat satellite image was analysed with 

emissivity and NDVI images. The non-urban areas were 

determined using the pixel values higher than 0.98 in emissivity 

image and pixel values lower than 0 in NDVI image. Therefore, 

these values were masked out by giving zero values to these 

pixels on DMSP_OLS image. The original and enhanced 

DMSP_OLS nighttime lights data were given in Figure 3. 

 

 
Figure 3. DMSP_OLS nighttime lights data, original (a) and 

enhanced (b) 
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3.2 RF classification 

The RF classification algorithm is suggested by Breiman (2001) 

and it is a supervised classification technique. RF classifier, 

which uses improved bagging and bootstrapping techniques, is 

based on decision tree. It includes huge amount of trees and 

each tree is grown from randomly chosen training pixels. In RF 

classification algorithm, there are two parameters that should be 

defined; k (number of trees to grow), and m (number of 

variables to split each node). RF and SVM (Support Vector 

Machine) classifiers are the most preferred machine-learning 

algorithms and their usage in remote sensing image 

classification is relatively new. RF and SVM classifiers are 

provides almost the same overall accuracies (Pal, 2005). On the 

other hand, RF classifier is not sensitive to noise or overtraining 

(Gislason et al., 2006). In addition, RF classifier is faster when 

compared with SVM classifier. Therefore, the RF classifier was 

preferred in this study.  

 

The detailed RF classification procedure that we used was 

explained in the previous study performed by the authors (Aslan 

and Koc-San, 2015). In RF classification, NDVI, ASTER 

GDEM and DMSP_OLS nighttime lights data were used as 

additional bands and five and six data sets were formed for 

Landsat 7 and Landsat 8 (Table 1 and Table 2) classification 

procedures, respectively. 

  

Landsat 7 ETM+ data sets 

Date set1 Pan-sharpened bands (Bands: 1-5, 7) 

Date set2 Pan-sharpened bands and NDVI image 

Date set3 Pan-sharpened bands and DMSP_OLS  

Date set4 Pan-sharpened bands and  Aster GDEM  

Date set5 All bands 

Table 1.The data sets showing band combination that used to 

RF classification of LANDSAT 7 ETM+ image 

 

Landsat 8 OLI/TIRS data sets 

Date set1 Pan-sharpened bands (Bands: 2-7) 

Date set2 Pan-sharpened bands (Bands: 1-7, 9) 

Date set3 Pan-sharpened bands and NDVI image 

Date set4 Pan-sharpened bands and DMSP_OLS  

Date set5 Pan-sharpened bands and  Aster GDEM   

Date set6 All bands 

Table 2. The data sets showing band combination that used to 

RF classification of LANDSAT 8 OLI/TIRS image 

 

After creating the data sets, thirteen classes, which are urban, 

industry, greenhouse, vegetation, irrigated agriculture, dry 

agriculture, rock, bare land, water, snow, cloud and shadow, 

were determined by analysing the imagery visually. Then, 300 

and 600 pixels per class were collected as training and testing, 

respectively from different areas. The RF classification was 

applied using Image RF IDL based tool that is used for remote 

sensing image classification (Koc-San, 2013a, 2013b; Waske et 

al., 2012). This tool is freely available and license and platform 

independent (Waske et al., 2012). The k and m values were 

selected as 100 and square root of the number of all input 

properties, respectively.  

 

3.3 Estimation of LST from Landsat 7 ETM+ and Landsat 

8 OLI/TIRS images 

To investigate the UHI effect on the central districts of Antalya 

city, the LST values were calculated using the Landsat thermal 

images (Band 6 for Landsat 7 ETM+ and Band 10 for Landsat 8 

OLI/TIRS Satellites)(Chen et al., 2006; Feng et al., 2014). 

 

For this purpose firstly, the DN values were converted to 

spectral radiance (Lb) using Eq.5: 

 

 Lb = Lmin + (Lmax - Lmin) * DN/ (Qcalmax - Qcalmin)   (5) 

 

where: 

Lb: Spectral radiance (W/(m2*sr*µm)) 

Lmin and Lmax: minimum and maximum thermal radiation energy 

that was obtained from image Metadata file.  

Qcalmin and Qcalmax: minimum and maximum quantized 

calibrated pixel values that were obtained from image Metadata 

file. 

 

Then, the brightness temperatures were calculated using the 

below given formula (Eq. 6): 

 

 Tb = K2 / (ln(K1/Lb + 1))                                   (6) 

 

Tb: brightness temperature 

K1: thermal conversion constant for the thermal band 

K2: thermal conversion constant for the thermal band 

K and K constant are findable image Metadata file. 

 

After that, the LST values were obtained from brightness 

temperatures (Artis and Carnahan, 1982; Weng et al., 2004); 

 

 Ts = Tb/ (1 + (ʎ * Tb/α) * lnε)                                   (7) 

 

Ts: land surface temperature (Kelvin) 

ʎ = 10.895 µm 

α = 14388.15 µmK 

ε: land surface emissivity (Sobrino et al., 2008) 

 

Lastly, the LST values were converted from Kelvin to Celsius 

degrees unit using the following equation (Eq. 8). 

 

 T (°C) = Ts - 273.15                                   (8) 

 

4. RESULTS 

4.1 RF classification assessment  

The obtained LU/LC thematic maps of Landsat 7 ETM+ and 

Landsat 8 OLI/TIRS imageries are illustrated in Figure 4. The 

overall accuracy values for Landsat 7 ETM+ and Landsat 8 

OLI/TIRS imageries are given in Table 3 and 4, respectively. 

When the obtained results are analysed, it can be stated that the 

RF classifier provides quite accurate LU/LC results with 

computed overall accuracies over than 80% for almost all the 

data sets. 

 

According to the obtained classification results, the two new 

bands of Landsat 8 OLI/TIRS satellite raised the classification 

accuracy about 1.6%. Using ASTER GDEM as additional band 

increases the classification accuracy mostly and this increase is 

about 4.5% and 7.4% for the years 2001 and 2014, respectively. 

Besides, DMSP_OLS nighttime lights data were increased the 

overall accuracy about 3.7% and 3.2% for the years 2001 and 

2014, respectively. On the other hand, using the NDVI image as 

additional band effects the accuracies slightly. 
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Figure 4. Thematic LU/LC maps of 2001 Landsat 7 ETM+ (a) 

and 2014 Landsat 8 OLI/TIRS (b) imageries 

 

When accuracy assessment results were analysed, it can be 

stated that using all additional bands in addition to original pan-

sharpened bands provided highest accuracy results and overall 

accuracy values were computed as 88.66% for Landsat 7 ETM+ 

and 91.31% for Landsat 8 OLI/TIRS imageries. The usage of 

additional bands increased the classification accuracies over 

than 8% when compared to using only pan-sharpened bands. 

 

 

Data 

sets 

1 2 3 4 5 

Overall 

acc. 

80.16 79.93 83.93 84.68 88.66 

Kappa 

coef. 

0.78 0.78 0.82 0.83 0.87 

Table 3. RF classification results for Landsat 7 ETM+ and 

additional bands 

 

Data 

sets 

1 2 3 4 5 6 

Overall 

acc. 

80.98 82.61 82.93 85.80 90.01 91.3

1 

Kappa 

coef. 

0.78 0.80 0.81 0.84 0.88 0.90 

Table 4. RF classification results for Landsat 8 OLI/TIRS and 

additional bands 

Additionally, LU/LC change was investigated between the 2001 

and 2014 years. The LU/LC change detection results 

demonstrate that urban, industry, greenhouse, agriculture and 

vegetation areas were increased, while the rock and bareland 

areas were decreased (Figure 5).  

 

 
Figure 5. The amount of LU/LC changes between the years 

2001-2014 (x and y axis shows LU/LC types and areas, 

respectively) 

 

Furthermore, there are positive change rate about 120% for 

urban, industry and irrigated agriculture areas, whereas there is 

negative change rate approximately -66% for bareland areas and 

-31% for rock areas.  

 

4.2 Relationship between LST and land use/cover type  

The relation between the previously determined LST values and 

LU/LC classes is analysed in this section. For this purpose, the 

cloud, shadow, water and snow areas were masked out from the 

study area for Landsat 7 ETM+ and Landsat 8 OLI imageries. 

The higher LST values were observed in urban, industry, 

greenhouse, dry agriculture and bareland areas. On the other 

hand, the lowest LST values were observed in vegetation areas 

(Table 5 and Figure 6). The LST values were increased for 

almost all areas from 2001 to 2014. This increase is more than 4 

°C for industrial and bareland areas and that is 3.6 °C, 3.4 °C, 

and 1.6 °C for urban, greenhouse, and vegetation areas, 

respectively. In contrast, the LST change is negative with -1.5 

°C in rock areas. 

 

Class LST value (°C) 

(2001) 

LST value (°C) 

(2014) 

Urban 35.52 39.14 

Industry 33.55 38.00 

Greenhouse 34.01 37.50 

Vegetation 29.45 31.07 

Irrigated agriculture 30.44 33.89 

Dry agriculture 36.35 39.20 

Rock 31.89 30.33 

Bareland 34.90 39.86 

Table 5. LU/LC types and their LST values  

 

 
Figure 6. Graph of the LU/LC types and their LST values 
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4.3 Assessment of the UHI effect magnitude and validity of 

the study result 

In this study, the UHI effect was determined by differencing the 

average LST values for built-up and green areas and this value 

was found about 5.6 °C and 6.8 °C for the years 2001 and 2014, 

respectively (Figure 7).  

 

 
 

Figure 7. Land Surface Temperatures maps of 2001 Landsat 7 

ETM+ (a) 2014 Landsat 8 OLI/TIRS (b) imageries. 

 

The validity of the study was tested using MODIS 

LST/Emissivity data. MODIS LST values were rescaled by Eq. 

9 (Odindi et al., 2015). 

 

 LST = (LSTI * 0.02) - 273.15                   (9) 

 

where: 

LSTM: rescaled LST digital values 

LSTI: original MODIS LST/Emissivity digital values 

The correlation between the MODIS LST/ Emissivity data and 

the Landsat LST images were computed and it was observed 

that the correlation values are quite high. The correlation values 

were computed as 0.7 for 2001 image (Landsat 7), while 0.9 for 

2014 image (Landsat 8).  

 

5. CONCLUSIONS 

In the present study, the LST value and UHI effect changes 

were evaluated between the years 2001 and 2014 using Landsat 

imageries. The LST values were computed using thermal 

imageries of Landsat 7ETM+ (June 5, 2001) and Landsat 8 

OLI/TIRS (June 17, 2014) imageries. In addition, the LU/LC 

thematic maps were created using RF classifier. The relation 

between the LST values and LU/LC classes were analysed. The 

study is implemented in the central districts of Antalya. 

 

The LU/LC thematic maps’ overall accuracies were computed 

above 80%. It was observed that, the classification accuracies 

were increased when all auxiliary data were used in addition to 

the original Landsat bands and in this case the classification 

overall accuracies were computed as 88.66% and 91.31% for 

Landsat 7 ETM+ and Landsat 8 OLI/TIRS, respectively. Urban, 

industry, greenhouse, vegetation, irrigated agriculture and dry 

agriculture areas increased, while bareland and rock areas 

reduced significantly within 13-year time interval. 

 

The world temperature is continuously increasing due to the 

global warming. In Antalya case, the LST values are also 

increased about 2.5 °C from 2001 to 2014, but this increase is 

not the same amount for each class. This increase is highest for 

bareland areas with 4.96 °C and it follows for industrial areas 

with 4.45 °C, for urban areas with 3.62 °C, for greenhouse areas 

with 3.49 °C, for irrigated agriculture with 3.45 °C. On the 

other hand, the LST value increases are relatively lower for dry 

agriculture, and vegetation classes, with the values of 2.85 °C, 

and 1.62, respectively. According to the obtained results, it can 

be said that the LST values vary depending on the surface 

property. Urban area is hotter than industrial area or vegetation 

area is colder than irrigated agriculture area. In addition to these 

cases, dry agriculture area is hotter than the irrigated agriculture 

area. Subsequently, the obtained results indicate that the LST 

value depends on the surface spatial property. The UHI effect 

was found as 5.6 °C and 6.8 °C for 2001 and 2014, respectively. 

Therefore, it can be stated that the UHI effect increased from 

2001 to 2014 about 1.2 °C.  
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