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ABSTRACT: 

 

The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen 

the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area.  So land use really 

matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover 

(LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as 

to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as 

well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image 

and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in 

FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear 

regression was done to create models that would predict LST for each class and it was found that the spatial metric “Effective mesh 

size” was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by 

analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two 

different farming periods.  

 

 

1. INTRODUCTION 

Land Surface Temperature (LST) is a very important measure in 

urban areas because as it increases, the possibilities of drought 

and heat stress also increase. It has been found that the 

temperatures are indeed greater in urban areas compared to rural 

areas (Sundara Kumar et al., 2012).  

 

It is clear that the main cause of the increasing temperatures is 

urbanization or the transformation of natural surfaces to 

buildings and other structures. These natural surfaces are often 

composed of plants and soil so they release water vapour that 

keeps the air cool in the area. On the other hand, materials that 

are being used as roofs of buildings have different thermal 

properties which absorbs more of the sun‟s energy thus results 

to high temperature in the urban area.  

 

Heat stress is a very big issue especially in urban areas and also 

in places where drought could occur. Areas in and around cities 

are generally warmer than most rural areas which should alarm 

people in those areas of the possibility of heat stress and its 

advanced effects like heat stroke which sometimes could be 

fatal. Furthermore, continuous urban development reduces 

vegetative cover and adds more surfaces that absorb heat like 

rooftops and paved roads. This also adds to the already growing 

harmful effect of climate change. It is known that there is 

indeed a relationship between land use and LST. Therefore, it is 

also very important to have a way to model LST based on Land 

Use Land Cover (LULC) so this relationship can be quantified.  

This model can be included in urban planning especially in 

plans of major urbanization to see the effect it would have on 

the LST in the area. 

 

2. OBJECTIVES 

This study aims to derive land surface temperature from a single 

Landsat 8 image and examine the effects of landscape patterns 

from LULC classification on surface temperature and create a 

regression model to predict surface temperature from class-level 

spatial metrics. The study also aims to develop a statistical 

framework to be used in analysing these relationships. 

 

3. DATA AND METHODS 

3.1 Study Area 

The study site that was selected for this study was an area in 

Talisay City, Negros Occidental, Philippines that showed the 

contrast between urban and rural land classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Orthophoto of the study site taken in June 2014 
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3.2 Data Sources 

Data Source Resolution Date Acquired 

LiDAR 1m June 2014 

Orthophoto 0.5m June 2014 

Landsat 8 TIRS Band 10 100m (30m) June 2014 

Landsat 8 OLI Band 4 - 5 30m June 2014 

Table 1. Summary of data sources, spatial resolution, and 

acquisition date 

 

The Landsat 8 image was taken during the period just before 

harvest season where crops are almost fully grown and ready to 

be harvested. The Landsat 8 image was taken around 02:05 AM 

local time and it was also made sure to have little to no cloud 

cover or haze in the study area so as not to distort any 

calculations for land surface temperature. 

 

3.3 Land Surface Temperature (LST) Derivation 

LST was derived from the Landsat 8 image. Only band 10 was 

used because for single channel methods, LST derived from 

band 10 gives higher accuracy than that of band 11 (Yu et al, 

2014). The following equation was used to convert the digital 

number (DN) of Landsat 8 TIR band 10 into spectral radiance 

(USGS, 2015): 

 

Lλ = ML * Qcal + AL     (1) 

 

where Lλ = spectral radiance 

Qcal = digital number (DN). 

 ML = radiance multiplicative scaling factor for the 

band (RADIANCE_MULT_BAND_n from the metadata) 

 AL
 = radiance additive scaling factor for the band 

(RADIANCE_ADD_BAND_n from the metadata) 

 

The spectral radiance is then converted to brightness 

temperature, which is the at-satellite temperature (TB) under an 

assumption of unity emissivity using the following equation 

(USGS, 2015): 

 

TB =        
  

  
    ⁄      (2) 

 

where TB = at-satellite brightness temperature in Kelvin (K) 

K1 and K2 = band-specific thermal conversion 

constants from the metadata 

 

Next, NDVI is computed using the NIR and Red band of the 

Landsat 8 image since it will be used in determining land 

surface emissivity (LSE). NDVI is calculated using the 

following equation (Tucker, 1979):  

 

     
     

     
      (3) 

 

 

In order to get the LSE, the vegetation proportion is obtained 

using the following equation (Carlson & Ripley, 1997): 

 

PV =  [                                   ⁄ ]  (4)   (3) 

 

where PV = vegetation proportion 

 NDVI = normalised difference vegetation index 

 NDVImin = minimum NDVI value 

 NDVImax = maximum NDVI value 

LSE is then computed using the following equation (Sobrino et 

al., 2004): 

 

LSE =                    (5) 

 

LST can now be computed (in degrees Celsius) using the at-

satellite brightness temperature and the land surface emissivity 

in this equation (Artis & Carnahan, 1982): 

 

LST = *    (   
  

 
)          ⁄ +          (6) 

 

where LST = land surface temperature 

 TB is the at-satellite brightness temperature 

   is the wavelength of emitted radiance (  = 11.5µm) 

(Markham & Barker, 1985) 

 ρ = h * c/σ (1.438 * 10-2 m K) 

 σ = Boltzmann constant (1.38 * 10-23 J/K) 

 h = Planck‟s constant (6.626 * 10-34Js) 

 c = velocity of light (2.998 * 108 m/s)  

 

3.4 Land Use Land Cover Classification 

Detailed land use land cover classes were obtained by using 

LiDAR data and orthophotos with an object-based image 

analysis (OBIA) approach. Different features from the LiDAR 

data and orthophotos were created and used to both segment and 

classify the study area. Using the pit-free canopy height model 

(CHM) (Khosravipour et al, 2014), the unclassified image was 

separated into ground and non-ground objects by using contrast 

split segmentation (Trimble, 2014). The ground and non-ground 

objects were further segmented using multiresolution 

segmentation (Trimble, 2014) and refinement was done by 

removing small and irrelevant objects. Training and validation 

points were collected by visual interpretation using the 

orthophoto and LiDAR derivatives like CHM and intensity. 

After collection, the classes found in the study area were 

Sugarcane (SC), Rice (Ri), Mango, Fallow (Fa), Bare Land 

(BL), Builtup (Bu), Grassland (Gr), Road (Rd), Trees (Tree), 

and Water. A support vector machine (SVM) was used to 

classify the segmented image and the initial result was refined 

using neighbourhood features and geometric features like area 

to get a more homogenous output. Smaller insignificant objects 

were merged with their larger neighbours. Accuracy assessment 

was done using the collected validation points. 

 

3.5 Spatial Metric Computation 

The relationship of LST derived from Landsat 8 and land cover 

class-level spatial metrics were investigated using simple linear 

regression. Preprocessing of the land cover polygons was done 

in ArcMap 10.3. The study site with an area of 3480 x 3570 

meters was divided into 30 x 30 meter grids.  Each grid had a 2 

meter buffer which was considered as its edge. The land cover 

polygons were clipped according to each grid and were 

rasterized afterwards. 

 

The rasters including their edges were then used as input in 

FRAGSTATS, a spatial analysis tool (McGarigal et al, 2012). It 

was utilized to derive the class-level spatial metrics of the land 

cover polygons in the study area. A total of 73 spatial metrics 

were tested in FRAGSTATS. Table 2 shows the class-level 

spatial metrics that were derived. 
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Metric Acronym 

Area and edge metrics  

Total (class) area  CA 

Percentage of landscape  PLAND 

Largest patch index  LPI 

Total edge TE 

Edge density ED 

Patch area distribution  AREA_MN, _AM, _MD, 

_RA, _SD, _CV 

Radius of gyration 

distribution 

 GYRATE_MN, _AM, 

_MD, _RA, _SD, _CV 

 

Shape metrics  

 Perimeter–area fractal 

dimension 

PAFRAC 

 Perimeter-area ratio 

distribution 

PARA_MN,_AM,_MD_RA

,_SD,_CV 

 Shape index distribution SHAPE_MN, _AM, 

_MD_RA,_SD,_CV 

 Fractal dimension index FRAC_MN, _AM, 

_MD_RA,_SD,_CV 

 Related circumscribing 

circle distribution 

CIRCLE_MN, _AM, 

_MD_RA,_SD,_CV 

 Contiguity index 

distribution 

CONTIG_MN, _AM, 

_MD_RA,_SD,_CV 

 

Aggregation Metrics  

Interspersion and 

juxtaposition index 

IJI 

Proportion of like 

adjacencies 

PLADJ 

Aggregation index AI 

Clumpiness index CLUMPY 

Landscape division index DIVISION 

Splitting index SPLIT 

Landscape shape index LSI 

Normalized LSI NLSI 

Patch Density PD 

Number of patches NP 

Patch Cohesion Index COHESION 

Effective mesh size  MESH 

Euclidean nearest 

neighbor distance 

distribution 

ENN_MN, _AM, 

_MD_RA,_SD,_CV 

Proximity index 

distribution 

PROX_MN, , _AM, 

_MD_RA,_SD,_CV 

Connectance Index CONNECT 

Note: The extended terms _MN, _AM, _MD, _RA, 

_SD, _CV mean ‘mean’, ‘area-weighted mean’, 

‘median’, ’range’, ‘standard deviation’, and 

‘coefficient of variation’, respectively. 

 

Table 2. Class-level spatial metrics derived from FRAGSTATS 

 

3.6 Statistics 

Before proceeding to any type of statistical analysis, checking 

for the presence of any missing data was done first. Should 

there be any missing values, the type of missingness of these 

values should also be known, whether they are either Missing 

Completely at Random (MCAR), Missing at Random (MAR) or 

Missing not at Random (MNAR). With this information, it will 

be known whether the missing values are informative or not. 

Little‟s MCAR Test was used to determine if the missing values 

are missing randomly or non-randomly (Little, 1988). Missing 

not at random (MNAR) implies that the missing values are 

informative. They carry important information about the data 

and thus not ignorable. Expectation Maximization (EM) is a 

method used to address missing data that are MNAR (Dempster 

et al, 1977). Before proceeding with Multiple Linear 

Regression, the data needs to satisfy the assumptions for it. The 

following are the assumptions that need to be satisfied before 

proceeding (Montgomery et al, 2012): 

 

Assumption 1: The dependent variable should be either an 

interval or ratio variable, that is, at continuous scale. Moreover, 

there should be two or more independent variables with either at 

continuous (interval or ratio) or categorical scale (nominal or 

ordinal) 

Assumption 2: The residuals should be independent, that is, 

errors are independent of one another. Independence of errors 

were checked using Durbin-Watson statistic. 

Assumption 3: The dependent variable (surface 

temperature) should be proportional to the independent 

variables (spatial metrics). 

Assumption 4: The data must show homoscedasticity. 

Assumption 5: No multicollinearity must occur. This 

means that no two or more independent variables must be 

highly correlated with each other. 

Assumption 6: There should be no significant outliers. 

Assumption 7: The residuals or the errors must be 

approximately normally distributed. 

Since spatial data naturally doesn‟t conform to three of these 

assumptions, namely homoscedasticity, multicollinearity, and 

outliers, these assumptions were ignored. After addressing the 

missing values, the data was inspected if it satisfied the 

assumptions for Multiple Linear Regression. When the four 

assumptions were met, Multiple Linear Regression was utilized. 

 

4. RESULTS AND DISCUSSION 

4.1 Land Surface Temperature 

Land Surface Temperature in degrees Celsius was derived from 

the Landsat 8 image. It is seen in the resulting image that the 

lower left area has generally higher temperatures than the rest of 

the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2014 Land Surface Temperature image  
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Statistics from the LST image were also calculated and can be 

seen in Table 3. 

 

 LST (°C) 

Minimum 22.26 

Maximum 28.96 

Mean 24.72 

Std dev. 1.13 

 

Table 3. Statistics of the Land Surface Temperature image 

 

4.2 Land Use Land Cover Classification 

The LiDAR and orthophoto data was successfully classified 

with an accuracy of not less than 90% overall accuracy and 85% 

Kappa coefficient. The resulting classes were agricultural fields, 

bare land, built-up, grassland, roads, trees, and water. 

 

Figure 3. Land Use Land Cover Classification image with 

corresponding legend 

 

The study area is composed of 44.15% of agricultural fields, 

17.15% of trees, 15.26% of grassland, 10.66% of water, 6.19% 

of builtup, 3.94% of bare land, and 2.65% of roads according to 

the results. It is observable that the lower left area of the image 

is highly urbanized as it is mostly classified as either built-up 

and roads. This corresponds to the same area in the LST image 

where the concentration of high temperatures is. 

 

4.3 Statistical Analysis of Data 

There are 10,990 cases with 73 spatial metrics as predictors of 

surface temperature. Approximately, 16.22% (12 out of 73) of 

the spatial metrics have incomplete data while approximately 

83.78% (61 out 73) of the spatial metrics have complete data. 

Out of 813,260 values the data has, approximately 8.736% is 

missing as seen in Figure 4. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of complete and incomplete data in the 

variables, cases and values. 

 

Using the Little‟s MCAR Test, missing values were identified 

as missing randomly or non-randomly.  Since p-value is less 

than 0.05, which means that it is not significant, we can 

conclude that the values are missing not at random (MNAR). 

 

 

 

 

 

 

 

Figure 5. Result of Little‟s MCAR test. Circled in red shows the 

significance to be .000 which shows the data to be MNAR. 

 

Upon knowing that the missing data is MNAR, Expectation 

Maximization was done to treat the data. After treating all the 

missing values the data was checked if it satisfied the 

assumptions of multiple linear regression. It appeared that more 

than one assumption was not met, which may result to incorrect 

or misleading analysis. Some of the predictor variables were not 

included in the analysis to solve this problem. These predictor 

variables were the ones which do not pose high importance in 

predicting the response variable: land surface temperature. 

 

Table 4 shows which of the remaining assumptions (1, 2, 3, 7) 

are satisfied or not satisfied by each class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Summary of which classes satisfy each assumption 

 

After checking the preliminary output, the following variables 

were included in the analysis:  

 Landscape shape index 

 Fractal index distribution (median) 

 Contiguity index distribution (median) 

 Perimeter-area fractal dimension 

 Proximity index distribution 

 Percentage of like adjacencies 

A
ssu

m
p

tio
n

 7
 

A
ssu

m
p

tio
n

 6
 

A
ssu

m
p

tio
n

 5
 

A
ssu

m
p

tio
n

 4
 

A
ssu

m
p

tio
n

 3
 

A
ssu

m
p

tio
n

 2
 

A
ssu

m
p

tio
n

 1
 

 

Y
es 

- - - 

Y
es 

Y
es 

Y
es 

A
g

ri_
field

 

Y
es 

-  

-  

- Y
es  

N
o

 

N
o

 

B
L

 

Y
es 

- -  

- Y
es  

N
o

 

N
o

  

B
u

 

Y
es 

- -  

-  

Y
es  

Y
es  

Y
es  

G
r
 

Y
es 

- -  

-  

Y
es  

Y
es  

Y
es  

R
d

 

Y
es 

- - -  

Y
es  

Y
es  

Y
es  

T
ree

 

Y
es 

- -  

-  

Y
es  

N
o

 

N
o

  

W
a

ter 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-851-2016 

 
854



 

 Interspersion and juxtaposition index 

 Effective mesh size 

 Splitting index 

 Aggregation index 

 

Including the said variables in the analysis would still violate 

the assumption that residuals are independent. This could be due 

to bias that is explainable by omitted variables. Therefore, we 

just ignore this violation. After doing Multi Linear Regression, 

the top predictors per class were determined. Using these top 

predictors, a linear model for each class was then created to 

predict LST. Table 5 shows the top predictors as well as the 

linear model created per class. 

 

 

Table 5. Summary of all classes with their top predictors and 

linear models for LST 

 

It was found that except for the class Road, all other classes 

have Effective mesh size as one of their top predictors or their 

only top predictor. If it is not the only predictor, it still has the 

biggest weight among the other variables in the linear 

regression models in each class. This means that Effective mesh 

size is a very important variable of Land Use Land Cover 

Classification in predicting LST. Effective mesh size is 

calculated by the following equation (Jaeger, 2000): 

 

       
∑    

  
   

 
     

 

      
  

 

Where     = area (    of patch ij 

            A = total landscape area (    
 

The advantage of utilizing effective mesh size in the model is 

that it is „area-proportionately additive‟ which means that it 

characterizes the subdivision of a landscape independently of its 

size (Jaeger, 2000). 

 

5. CONCLUSION AND RECOMMENDATION 

Land Surface Temperature was derived from a Landsat 8 image 

although it was not validated due to equipment limitations. 

LULC classification was also derived from LiDAR and 

Orthophoto data. The LULC classification resulted in 7 classes 

namely agricultural fields, bare land, built-up, road, trees, and 

water. Class-level spatial metrics were derived from the LULC 

classification. After statistical analysis of the class-level spatial 

metrics and their relationship with LST, it was found that the 

spatial metric “Effective mesh size” was the most common 

variable in predicting LST as it appeared as a top predictor for 6 

out of 7 classes, with Road as the only class without “Effective 

mesh size” as a top predictor. 

 

The thermal data used to derive LST was acquired during a 

specific period (just before the end of the growing season). This 

has an effect on the LST since the crops are at the peak of their 

growth which would imply that the area would generally have 

lower temperatures. Analysis of the LST of another farming 

period would provide a better analysis of the relationship 

between LST and LULC landscape patterns. Aside from 

checking if effective mesh size remains a predictor for LST for 

an LST in a different farming period, finding the common 

predictors for two LSTs from different farming periods will 

give a more generalized model for predicting LST. With a 

generalized prediction model of LST based on LULC, better 

urban planning can be done with respect to the predicted LST to 

reduce heat-related stress and ailments in the area. 
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