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ABSTRACT:  

 

This study implements a data mining-based algorithm, the random forests classifier, with geo-spatial data to construct a regional and 

rainfall-induced landslide susceptibility model. The developed model also takes account of landslide regions (source, non-occurrence 

and run-out signatures) from the original landslide inventory in order to increase the reliability of the susceptibility modelling. A 

total of ten causative factors were collected and used in this study, including aspect, curvature, elevation, slope, faults, geology, 

NDVI (Normalized Difference Vegetation Index), rivers, roads and soil data. Consequently, this study transforms the landslide 

inventory and vector-based causative factors into the pixel-based format in order to overlay with other raster data for constructing the 

random forests based model. This study also uses original and edited topographic data in the analysis to understand their impacts to 

the susceptibility modeling. Experimental results demonstrate that after identifying the run-out signatures, the overall accuracy and 

Kappa coefficient have been reached to be become more than 85 % and 0.8, respectively. In addition, correcting unreasonable 

topographic feature of the digital terrain model also produces more reliable modelling results. 

 

 

1. INTRODUCTION 

Typhoon Morakot made landfall in Taiwan on 8 August in 

2009. The heavy rainfall induced catastrophic landslides as well 

as debris flows. The triggered hazards destroyed buildings, 

crops, civil infrastructures and other facilities, causing serious 

human casualties, properties and economic loss. Several studies 

have concentrated on detecting (e.g. Mondidi and Chang, 

2014), characterizing (e.g. Tsai et al., 2010) and modelling (e.g. 

Chang et al., 2014) a catastrophic landslide event over Xiaolin 

(or Shiaolin, Hsiaolin) village and Kaoping watershed in 

southern Taiwan in order to prevent and mitigate similar 

disaster effects in the future. 

 

Modelling landslide susceptibility is one of the fundamental 

and essential tasks in the related works. In this study, landslide 

susceptibility refers to the likelihood of landslide occurrence in 

an area with given local terrain attributes (Brabb, 1984) and the 

triggering factor (i.e. rainfall) is not taken into account (Dai et 

al., 2002). A review of the literature indicates that the 

continuing improvements in remote sensing and geographic 

information systems (GIS) have led to cooperate with statistical 

and data mining (or machine learning) models to evaluate the 

regional landslide susceptibility. In particular, GIS-based 

models with geo-spatial data (van Westen et al., 2008; Wang et 

al., 2005) and event-based landslide inventory (Guzzetti et al., 

2012; Lee et al., 2008) have been emphasized and discussed in 

recent years. With increasing high spatial, spectral and temporal 

resolutions of remote sensing imageries, landslide areas can be  

automatically or semi-automatically detected during a single 

triggering event using pixel-based (e.g. Mondidi and Chang, 

2014) and object-oriented (e.g. Wang and Niu, 2009) strategies 

for generating landslide inventories. After that, event-based 

landslide susceptibility analysis can be conducted for further 

assessing landslide hazard, vulnerability and risk (Guzzetti et 

al., 2012).  

 

There are three common features of typical natural terrain 

landslides from a geotechnical point of view. Source area is 

defined by a surface of rupture which comprises the main scarp 

and the scarp floor; landslide trail downslope of the source area 

is where landslide mass transport predominates, though erosion 

and deposition may also occur; depositions fan where the 

majority of the landslide mass is deposited (Dai and Lee, 2002). 

Another term, run-out, generally describes the downslope 

displacement of failed geo-materials from landslides (Mondini 

et al., 2011); it indicates the landslide trails and depositions in 

this study. In general, landslide area detected by automatic and 

semi-automatic algorithms from remotely sensed images might 

contain run-out area, unless removed by geologists or experts 

manually using stereo aerial photos or other auxiliary data. 

However, real landslides should exclude run-out area in a strict 

definition because the later are different mechanisms. It might 

reduce the reliability of a landslide susceptibility model 

constructed from impure training data. 

 

The objective of this study is to implement a data mining based 

algorithm, the Random Forests (RF) classifier, with geo-spatial 
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data to construct a regional and rainfall-induced landslide 

susceptibility model, which takes account of landslide source, 

non-occurrence and run-out signatures according to a GIS-based 

landslide inventory of the study site generated after the 

Typhoon Morakot event. 

 

2. STUDY AREA AND DATA 

An area of 117 km2 of the Kaoping watershed in southern 

Taiwan is selected as the study site (Figure. 1). The elevation of 

the study site ranges from 258 to 1,666 m above sea level 

measured from DEM (Digital Elevation Model). In addition, the 

average slope and standard deviation are 25.84° and 11.98° 

respectively. According to the geological and soil maps 

published by the Central Geological Survey of Taiwan, there are 

three geological formations and four soil types covering the 

study area. The former contains Lushan, Sanhsia and 

Toukoshan formations. The four soil types include alluvium, 

colluviums, lithosol and loam soils. 

 

 
Figure 1. Study site 

 

A landslide inventory map generated after Typhoon Morakot 

was further interpreted manually to separate the source, run-out 

and channel classes according to stereo aerial photos and 

auxiliary data. This study also collected the faults, rivers, roads 

data and NDVI (Normalized Difference Vegetation Index) 

information derived from a pre-event Formosat-2 satellite image. 

Moreover, all line features and DEM are further analyzed to 

obtain the distances from each cell to the nearest line features 

(i.e. distance to fault, river and road) and other topographic data 

(i.e. aspect, curvature and slope). A total of ten causative factors 

are transferred into raster format as listed in Table 1. The grid 

size is 10 by 10 meters. In addition, the landslide inventory map 

is also converted into the grids format (10 by 10 meters) to 

match the corresponding causative factors for connecting 

environmental and landslide information to construct 

susceptibility models. On the other hand, the edited DEM 

produced by Chiang et al. (2012) is also used to compare with 

the original DEM for examining the effect of topographic data. 

 

Original data Used data (raster format) 

10m-DEM (including 

original and edited) 

Aspect 

Curvature 

Elevation 

Slope 

Fault feature Distance to fault 

Geology map Geology 

River feature Distance to river 

Road feature Distance to road 

Satellite image NDVI 

Soil map Soil 

Table 1. The used landslide causative factors 

 

3. METHODOLOGY 

The Random Forests (RF) classifier (Breiman, 2001) is 

employed for constructing the landslide susceptibility model in 

this study. This is an extension of Decision Tree (DT) algorithm 

which is a classical and popular approach in the machine 

learning domain. The concept of both RF and DT classifiers is 

similar and both adopt the Information Gain (IG) measure to 

evaluate the degree of impurity of causative factors. The larger 

IG indicates that the corresponding causative factor should be 

selected in a higher priority to construct a conditional node and 

ignore this factor in next computation. After several iterations, a 

tree model, which comprises a sequence of "If-Then" rules, is 

extracted to classify other instances. The difference between the 

random forests and decision tree algorithm is that the former 

randomly separates training data into many subsets to build 

many trees (so called the forest) and optimize them. 

 

In general, nominal (or discrete) and numeric (or continuous) 

data are two major geo-spatial data formats. For the nominal 

data, the information gain is computed by the entropy 

calculation as described in Eqs. (1)-(3), where E(A) indicates 

the entropy of all training data; m is the number of classes; n 

and N are subset and total amounts in the decision attribute (i.e. 

label or class), respectively; E'(a) and v represent the entropy 

and subset amounts individually of a specific causative factor; 

E(aj) is the entropy of the subset in a specific causative factor 

computed by Eq. (1); IG(a) indicates the information gain of a 

specific causative factor. For numeric data, the Gini index is 

utilized to calculate the information gain measure as described 

in Eqs. (4) and (5), where C represents a segmented point for a 

specific causative factor to divide numeric data into two parts; 

N1 and N2 are the numbers of a≦C and a>C, respectively. This 

study performs the RF classification as well as the accuracy 

assessment using the WEKA software 

(http://www.cs.waikato.ac.nz/ml/weka/) which is a free and 

open-source platform. 
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Two thirds of the samples are selected as training data to build 

the landslide susceptibility model and the remainders are 

reserved as check data to verify the model. After that, the 

classified results are quantitatively evaluated against the check 

data based on Overall Accuracy (OA), Kappa coefficient, 

Producer's Accuracy (PA) and User's Accuracy (PA) indexes 

computed from a confusion matrix. The landslide susceptibility 

map can be generated pixel by pixel according to the landslide’s 

probability obtained from the constructed model as long as the 

verification result is acceptable. 

 

4. RESULTS 

Based on the algorithm and procedure mentioned in the 

previous section, the constructed models are verified by the 

classification-based indexes derived from confusion matrices. 

Figure 2 shows the evaluations of landslide susceptibility 

models considering different numbers of samples, using original 

and edited DEM as well as topographic (i.e. aspect, curvature, 

elevation and slope) and all causative factors, respectively. It is 

obvious that the edited DEM provides great improvement of 

classification results, especially the non-landslide class (Figure 

2a and 2b). In addition, using all landslide causative factors can 

reach higher accuracies than topographic data only. It is also 

noted that the performance difference between both is reduced 

while using the edited DEM and derived data, further 

demonstrating the effect of topographic data. Chiang et al. 

(2012) mentioned that the original DEM contained surface 

irregularities caused by isolated tree heights and discontinuous 

streams. These irregularities could affect calculations of slope 

gradient and upstream contributing area. Therefore, Chiang et al. 

(2012) manually edited the original DEM according to the 

hillslope and slope maps. It is clear that the results mentioned 

above comply with the opinion of Chiang et al. (2012) and also 

prove the significance of topographic data on landslide 

susceptibility modeling. Figure 2g and 2h also demonstrate that 

the run-out signature has an important impact in the models. 

 

 
(a) Overall accuracy (OA) 

 

 
(b) Kappa coefficient 

 

 
(c) User’s accuracy (UA) of non-landslide class (N) 

 

 
(d) Producer’s accuracy (PA) of non-landslide class 

 

 
(e) User’s accuracy of landslide source class (L) 
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(f) Producer’s accuracy of landslide source class 

 

 
(g) User’s accuracy of run-out class (R) 

 

 
(h) Producer’s accuracy of run-out class 

Figure 2. Evaluations of classification-based landslide 

susceptibility models considering different number of samples, 

using original (Ori) and edited (Edited) DEM as well as 

topographic (Topo) and all (All) causative factors, respectively. 

 

To evaluate classifier’s performance, this study compares the 

best result of random forests with decision tree algorithm using 

all landslide causative factors. In addition, the topographic data 

derived from original and edited DEMs are also considered. 

Figure 3 shows that random forests algorithm outperforms the 

decision tree classifier. It is also noted that the performance 

difference between both algorithms is reduced while using the 

edited DEM and derived data, suggesting the significance of 

topographic data. The landslide susceptibility map produced 

from the developed model is shown in Figure 4. Based on this 

map, future researches may further include other information to 

achieve landslide hazard and risk assessment and management 

as well as to assist land planning and policy marking. 

 

 
Figure 3. Comparing the best performance of Random Forests 

(RF) with Decision Tree (DT) using all landslide causative 

factors that the topographic data derived from original (Ori) and 

edited (Edited) DEMs are considered, respectively. 

 

 
Figure 4. The preliminary landslide susceptibility map 

 

5. CONCLUSION 

This study constructed a regional landslide susceptibility model 

using geo-spatial data in consideration of source, run-out and 

non-occurrence landslide classes. A random forests based model 

was developed and verified. Moreover, this study also 

considered and compared the effect of different numbers of 

samples as well as original and edited topographic data on 

regional landslide susceptibility modeling. To evaluate the 

classifier’s performance, Random Forests was also compared 

with a classical algorithm, decision tree. 

 

Experimental results indicate that after identifying run-out 

signature from the landslide inventory, the overall accuracy and 
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Kappa coefficient are reached to be approximately more than 85 

% and 0.8, respectively. Furthermore, topographic data are 

proved to be a significant factor on landslide susceptibility 

modeling. The results also demonstrate that random forests 

algorithm outperforms decision tree classifier. Finally, 

according to the modeling results, a preliminary landslide 

susceptibility map of the study site is produced. Future works 

could explore the effect of other sampling strategies, and extend 

the preliminary landslide susceptibility map for further landslide 

hazard and risk assessment management as well as land 

planning and policy-making. 
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