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ABSTRACT: 

 

In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated 

methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and 

biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite 

and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were 

collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy 

reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the 

grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix 

levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic 

composition and chromatic characteristics can be efficiently estimated from the satellite data. 

 

 

 

1. INTRODUCTION 

Multispectral sensors on-board satellite, aerial and UAV 

platforms are nowadays the main source of information for 

precision agriculture and environmental monitoring 

applications. Due to certain key factors like aerial flight 

regulations and cost, satellite remote sensing is, still, providing 

cost-effective, geospatial vegetation maps with up to thirty 

centimetres spatial resolution. At the same time, open data 

policies both in US and EU and commercial earth observation 

satellite missions are delivering an unprecedented volume of 

data with increasing level of detail and accuracy.  

 

In order to operationally exploit these earth observation data for 

precision agriculture applications, validated processing 

pipelines should be established in order to interpret the 

observed reflectance spectra into quantitative information 

regarding several biophysical and biochemical parameters of 

crops, varieties and fruits 

 

Crop-based and variety-based data analysis can create valuable 

validated agricultural maps and products for the implementation 

of effective management decisions [Urretavizcaya et al., 2014]. 

In particular, for precision viticulture applications, along with 

the in-field analysis, the different mapping products (like 

canopy, vigor, maturity, etc.) must take into account and be 

optimized according to the variety [Pérez-Lamela et al., 2007, 

Clavijo et al., 2010, Santesteban et al., 2013, Song et al., 2014]. 

  

In this paper, we evaluated multitemporal high spatial and 

spectral resolution satellite data for selective harvesting in 

vineyards. From concurrent satellite and field campaigns multi-

modal data were acquired during the veraison period of 2013, 

2014 and 2015. In particular, i) ground radiance data using a 

field spectrometer (GER 1500, Spectra Vista Corporation, 350-

1050nm, 512 spectral bands) and ii) WorldView-2 and Pleiades 

satellite data were acquired along with fruit/grape sampling 

from different vine varieties in the study areas of Naoussa and 

Amynteo in Northern Greece. The satellite imagery had a spatial 

resolution of about 0.5m in the panchromatic band, and about 

2m in the 8 multispectral bands which covered the range 

between 400nm to 1040nm. 

 

Data pre-processing included radiometric correction, 

atmospheric data correction and image fusion/pan-sharpening. 

In addition to that, ground reflectance data was calculated from 

the atmospherically corrected ground radiance. Also, simulated 

ground radiance and reflectance data, corresponding to the eight 

WV-2 bands, was computed and employed during the 

evaluation. Thus, it was made possible to evaluate the 

relationship between ground data and satellite data, through 

correlation and linear regression models. Using linear 

regression models, the spectral signatures computed from 

satellite data were correlated with the ones computed from the 

simulated ground data (GER1500). 

 

Furthermore, several (around twenty) vegetation indices were 

computed, using the atmospherically corrected satellite data. 

The calculated indices were in general classified into the 

following five categories: Vegetation (NDVI, MCARI2, 

MTVI2, etc.), Chlorophyll (Gitelson Chl1-2, etc. ), Carotenoids 

(Blackburn Car1-2, Gitelson Car1-2), Carotenoid to 

Chlorophyll Ratio (NPCI, SIPI, etc.), Anthocyanin (Gamon 

Anth, etc.). Additionally, the green LAI (Leaf Area Index) was 

computed through a linear relation with the NDVI. Based on 

the results obtained from the analysis of grape sampling, 

qualitative biophysical and biochemical parameters (like pH, 

Brix, total acidity, anthocyanin, etc.) were estimated in certain 

locations and relationships were established between the remote 

sensing data. Based on the produced geospatial maps associated 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-919-2016 

 
919

mailto:zach.kandylakis@gmail.com
mailto:karank@central.ntua.gr


 

with specific biophysical variables, the estimated spatial 

variability indicated several zones for selective harvesting. In 

particular, the performed zoning was finally associated with 

other vine characteristics (like vine variety, etc) and grape 

quality parameters (like must quality, maturity, etc), towards 

optimal selective harvesting and viticultural management. The 

experimental results have been evaluated both quantitatively 

and qualitatively and appear promising. 

 

 

2. MATERIALS AND METHODS 

2.1 Description of Datasets 

The datasets used for this study were multispectral satellite 

images (Worldview-2, Pleiades) and radiance data acquired 

with a portable spectroradiometer (GER 1500). 

 

Study area A is located in Western Macedonia, inside the PGI 

zone Naoussa and more specifically near the Giannakochori 

village. The altitude of the region is about 200m above sea 

level.  Study area B is located in Western Macedonia, inside the 

PGI zone Florina near the Amynteo village, at an altitude of 

about 600 m above sea level. 

 

In particular, the new collections of high resolution satellite 

data that were employed included: 

 One WorldView-2 satellite image acquired in 2013 for 

study area A 

 One Pleiades satellite image acquired in 2014 for study 

area B 

 One WorldView-2 satellite image acquired in 2015 for 

study area B 

 

 

 

Figure 1. The two study areas in Northern Greece, natural color 

RGB, obtained from the WorldView-2 data used  

 

All of the above images were acquired during the veraison 

period which was approximately during late July at study area A 

and during early August at study area B. Concurrently with the 

satellite image acquisitions, field campaigns were executed in 

order to collect ground truth spectral radiance data with a 

spectroradiometer (GER 1500). For each target (canopy of 

several wine varieties, other crops, soil, etc.), several 

observations were collected with nadir view in the principal 

plane. 

 

During the harvesting period the winemakers in both study 

areas collected grape samples from specific plants or groups of 

plants. After the laboratory analysis on both grapes and must, 

several qualitative parameters were calculated including BRIX, 

Potential Alcohol, pH, Total Acidity, Color Index, Total 

Phenolic Content, Anthocyanin concentrations and Absorbed 

Nitrogen. 

 

2.2 Data Pre-processing 

Radiometric and atmospheric corrections were performed on the 

satellite imagery towards the elimination of solar illumination, 

atmospheric and terrain effects. Digital numbers of relative 

radiance were converted to absolute radiance using the absolute 

radiometric calibration factors and effective bandwidths for 

each band. 

 

2.2.1 Atmospheric Corrections / Reflectance: Atmospheric 

correction was conducted through ENVI’s (ed. 5.0) Fast Line-

of-sight Atmospheric Analysis of Hypercubes (FLAASH). In 

addition, absolute bi-directional reflectance was obtained using 

the spectral readings from the portable spectroradiometer, by 

normalizing the readings with the reference panel. More 

precisely, bi-directional reflectance was calculated by: 

 

RT= LT/LR∗k                                      (1) 

 

where, RT is the absolute spectral reflectance of the target, LT 

the radiance of the target, LR the relative irradiance value of the 

reference panel and k the panel’s reflectance spectrum, as a 

calibrating factor, measured in the laboratory. The reflectance 

values for each variety’s canopy were depicted through 

reflectance charts, within the range of 0 to 1, forming the 

corresponding spectral signatures. 

 

To validate the relationship between the satellite and in-situ 

observations, linear regression models were employed, 

comparing atmospherically corrected satellite data to reflectance 

ground truth data. The results showed correlation levels of over 

90%. 

 

2.2.2 Establishing Correlations between Grape/Must 

Quality Parameters and Satellite Observations: For the 

purposes of this study, more than twenty vegetation and 

pigment indices were computed from the atmospherically 

corrected satellite data [Johnson et al., 2003, Zarco-Tejada et 

al., 2005, Meggio et al., 2010]. In Table 2, several of them are 

presented. However, many of them had been originally 

proposed and associated with narrow spectral bands and 

hyperspectral data. Therefore, in such cases the closest 

multispectral broadband channels were employed. In addition, 

indices involving wavelengths at the Red-Edge and Coastal 

areas were not computed for the 2014 dataset (Pleiades), due to 

unavailability of such multispectral bands  
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The employed Vegetation-related Indices 

Index Equation Reference 

Vegetation Indices 

DVI R800 - R670 
Jordan 

(1969) 

NDVI (Rnir−Rred)/(Rnir+Rred) 
Tucker 

(1979) 

RDVI (R800 - R670) /  sqrt (R800  + R670  ) 

Rougean & 

Breon 

(1995) 

Modified Chlorophyll absorption in Reflectance Indices 

MCARI1,2 
[ ( R700 - R670)  -  0.2 *( R700 - 

R550) ]  *  ( R700 /R670) 

Daughtry et 

al. (2000) 

TCARI1,2 
3* [( R700 - R670)   -   0.2 *( R700 - 

R550) * ( R700 /R670) ] 

Haboudane 

et al. (2002) 

MCARI11 
1.2 *  [ 2.5*( R800 - R670)  -  1.3 *( 

R800 - R550) ] 

Haboudane 

et al. (2004) 

MCARI21 

1.2 *  [ 2.5*( R800 - R670)  -  1.3 *( 

R800 - R550) ]   / 

(sqrt ( (2* R800  +1)2 - (6* R800  - 

5* sqrt( R670) )  -  0.5) 

Haboudane 

et al. (2004) 

Chlorophyll a-b 

Gitelson 

Chl11 

[ 1 / ( R540-560 ) – 1 / ( R760-800 ) ] 

* ( R760-800 ) 

Gitelson et 

al. (2006) 

Gitelson 

Chl21,2 

[ 1 / ( R690-720 ) – 1 / ( R760-800 ) ] 

* ( R760-800 ) 

Gitelson et 

al. (2006) 

Carotenoids 

Blackburn 

Car11 
( R800 / R470 ) 

Blackburn 

(1998) 

Blackburn 

Car21 

( R800 − R470 ) 

/ ( R800 + R470 ) 

Blackburn 

(1998) 

Gitelson 

Car11 

[ 1 / ( R510–520 ) – 1 / ( R540–560 ) ] 

* ( R760–800 ) 

Gitelson et 

al. (2006) 

Gitelson 

Car21,2 

[ 1 / ( R510–520 ) – 1 / ( R690-710 ) ] 

* ( R760-800 ) 

Gitelson et 

al. (2006) 

Anthocyanins 

Gamon 

Anth1 
 (R600-700)/(R500-600) 

Gamon and 

Surfus 

(1999) 

Gitelson 

Anth1,2 

[ 1 / ( R540-560 ) – 1 / ( R690-710 ) ] 

 * ( R760-800 ) 

Gitelson et 

al. (2006) 

Carotenoid to Chlorophyll Ratio 

CTR11,2 R695 /R420 
Carter 

(1996) 

NPCI1,2 
(R680 - R430 ) / 

(R680+ R430) 

Penuelas et 

al. (1994) 

SRPI1,2 R430 /R680 
Peñuelas et 

al. (1995) 

SIPI1,2 
(R800 - R445 ) / 

(R800+ R650) 

Peñuelas et 

al. (1995) 

 1 although this is a narrow band index from the literature, during our 
experiments the closest broadband spectral bands from the available satellites 
were employed for its calculation. 
2 not calculated for the 2014 dataset due to unavailability of Coastal and 
Red-Edge Bands 

Table 1. The spectral indices that were employed during the 

regression experiments 

 

In order to establish correlations between must quality 

parameters and multispectral reflectance data, simple linear 

regression models were employed. Pixel samples were collected 

at the particular coordinates of the in-situ grape sampling 

locations. 

 

It should be noted that each variety was studied separately and 

results mainly for the varieties Syrah and Xinomavro are 

discussed here. 

 

A set of semi-automatic MATLAB functions was developed, 

towards the automation of the linear regression procedure 

among numerous samples, indices, years and must quality 

parameters.  

 

3. EXPEREMENTAL RESULTS AND VALDIATION 

In this section, some indicative results are showcased to support 

the correlation of certain biophysical/biochemical parameters of 

grape/must/wine with certain indices. 

 

3.1 Estimating Brix levels for Syrah in all study areas 

In Table 2, r2 results are presented, regarding the comparison 

between the top two scoring indices and BRIX data for each of 

the three datasets. Taking into account the band wavelengths 

used to compute these indices, the following outcomes are 

highlighted: 

 

1. Highest correlation rates were established in all cases where 

both Coastal (425 ± 25nm) and Red (R660 ± 30 nm) spectral 

bands were involved. 

 

2.  In the case of the 2014 dataset (Pleiades), where a Coastal 

band was not available, a combination between NIR (R850 ± 

100 nm) and Red (R660 ± 60 nm) bands delivered the highest 

rates. Indicatively, BRIX-DVI comparison can be observed in 

Figure 2. 

 

3. NIR1 (R830 ± 60 nm) and Red (R660 ± 30 nm) spectral 

bands, under several combinations (indices), delivered high 

correlation rates also in the cases of 2013 and 2015 datasets 

(WV2). However, indices involving Coastal (425 ± 25nm) 

provided slightly better results. 

 

 
Figure 2. BRIX – DVI comparison provided the best correlation 

results for the 2014 dataset 
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Multitemporal estimating of Brix levels 

2013 2014 2015 

Naoussa Amynteo Amynteo 

Index r2 Index r2 Index r2 

NPCI 60.0% DVI 76.7% CTR1 70.4% 

SRPI 58.3% MCARI1 71.3% SIPI 61.9% 

 Table 2. The highest correlation rates regarding the estimation 

of Brix level for Syrah vineyards 

 

 

3.2 Estimating Total Phenolic Content for Syrah in 2013 

The resulting correlations between certain indices and the Total 

Phenolic Content reference data for 2013 are presented in Table 

3. The top five indices with the higher r2 were the TCARI, 

Gitelson Chl2, and NDVI/RDVI/DVI. The overall analysis 

regarding the spectral band wavelengths involved in these 

indices resulted into the following insights: 

 

1. Highest correlation rates were established when all three of 

the RedEdge (R725 ± 20 nm) Red (R660 ± 30 nm) and Green 

(R545  ± 35 nm) spectral bands were involved. 

 

2. The RedEdge (R725 ± 20 nm) spectral band was included in 

the two models with the highest r2 scores. 

 

3. Involvement of the NIR1 (R830 ± 60 nm) band appears to 

hinder the correlations. 

 

Total Phenolic Content for Syrah in 2013 

Index involved spectral bands r2 

TCARI 

R725 ± 20 nm 

R660 ± 30 nm 

R545  ± 35 nm 

97.1% 

Gitelson Chl2 
R830 ± 60 nm 

R725 ± 20 nm 63.8% 

DVI 
R830 ± 60 nm 

R660  ± 30 nm 
56.5% 

RDVI 
R830 ± 60 nm 

R660  ± 30 nm 
56.4% 

NDVI 
R830 ± 60 nm 

R660  ± 30 nm 
55.2% 

Table 3. The highest correlation rates regarding the estimation 

of Total Phenolic Content for Syrah vineyards in 2013 

 

 

3.3 Estimating Brix to Total Acidity ratio levels for Syrah in 

2014 

In Table 4, r2 results for the comparison between the top five 

scoring indices and BRIX to Total Acidity ratio are presented. 

This ratio is an indicator of maturity employed widely by 

winemakers. The following remarks can be highlighted after a 

comparative analysis: 

 

1. Highest correlation rates were established with indices 

involving NIR (R850 ± 100 nm) and Green (R550 ± 60 nm) 

spectral bands. 

 

2. NIR (R850 ± 100 nm) was included in all models with the 

highest r2 scores. Thus, the NIR band seems to be the one 

strongly correlated with the Brix to Total Acidity ratio, and the 

other ones contribute by adjusting any canopy, soil properties. 

 
Figure 3. The highest correlation rate for 2013 was established 

with the TCARI for estimation of the Total Phenolic Content 

 

 

 

 

3. Along with the NIR1 (R850 ± 100 nm), Red and Blue 

spectral bands also delivered high correlation rates 

 

4. Vegetation indices DVI/RDVI and MCARI1 also delivered 

high correlation values between 74% and 78% 

 

5. DVI performs marginally better (~2%) than in the 

corresponding for 2014 BRIX estimation (Table 2). This is 

expected as BRIX and Total Acidity are usually inversely 

correlated. However, a further analysis indicated that inclusion 

of the Green band and exclusion of the Red band can optimize 

Total Acidity comparisons. Regression results between Total 

Acidity and indices involving the Green but not the Red bands 

scored higher. In Figure 5, the corresponding regression 

regarding the highest score of these experiments (Gitelson 

Chl1) is presented. 

 

 

 

 

BRIX / (Total Acidity)  levels for Syrah in 2014 

Index involved spectral bands r2 

Gitelson Chl1 
R850 ± 100 nm 

R550  ± 60 nm 
81.2% 

Blackburn Car1 
R850 ± 100 nm 

R490 ± 60 nm 
78.3% 

DVI 
R850 ± 100 nm 

R660  ± 60 nm 
78.3% 

Blackburn Car2 
R850 ± 100 nm 

R490 ± 60 nm 
76.3% 

RDVI 
R850 ± 100 nm 

R660  ± 60 nm 
76.2% 

MCARI1 

R850 ± 100 nm 

R660  ± 60 nm 

R550  ± 60 nm 

74.3% 

Table 4. The highest correlation rates regarding the estimation 

of Brix-to-TA levels for Syrah in 2014 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-919-2016 

 
922



 

 
Figure 4. The highest correlation rate for the estimation of Brix-

to-TA levels for the 2014 dataset was established with the 

Gitelson_Chl1 index 

 

3.4 Estimating Anthocyanin levels for Syrah in 2015 

The regression results between indices and Anthocyanin levels 

for 2015 are presented in Table 3. The top scoring band 

combinations were pigment indices e.g., Gitelson Chl1/Chl2, 

Blackburn Car1/Car2 and Gitelson Anth, proposed by Gitelson 

et al. (2006) specifically for the estimation of Anthocyanin 

levels. Also MCARI2, involving the same spectral bands as 

Gitelson Anth, provided high results. 

 

1.  Highest correlation rates were established with indices 

involving the NIR1 (R830 ± 60 nm) spectral band in 

combination with the RedEdge (R725 ± 20 nm) or Green 

(R550 ± 60 nm) bands (Gitelson Chl2, Gitelson Chl1). 

 

2. The top four indices were computed using two or three of the 

spectral bands mentioned above.  

 

3. The NIR1 (R830 ± 60 nm) spectral band appears in all of the 

top six scoring indices. 

 

4. Use of the Blue (R480 ± 30 nm) spectral band provides 

acceptable, though slightly worse, results. Thus, NIR1 (R830 ± 

60 nm) seems to be very strongly correlated with Anthocyanin 

levels. 

 

Anthocyanin levels for Syrah in 2015 

Index involved spectral bands r2 

Gitelson Chl2 
R830 ± 60 nm 

R725 ± 20 nm 
78.6% 

Gitelson Chl1 
R830 ± 60 nm 

R545  ± 35 nm 
78.6% 

Gitelson Anth 

R830 ± 60 nm 

R725 ± 20 nm 

R545  ± 35 nm 

78.1% 

MCARI2 

R830 ± 60 nm 

R725 ± 20 nm 

R545  ± 35 nm 

76.7% 

Blackburn Car1 

Blackburn Car2 

R830 ± 60 nm 

R480 ± 30 nm 
75.3% 

Table 5. The highest correlation rates regarding the estimation 

of Anthocyanin levels for Syrah in 2015 

 
Figure 5. The highest correlation rate for the estimation of Total 

Acidity levels for the 2014 dataset was established with the 

Gitelson_Chl1 index 

 

 

 
Figure 6. The highest correlation rate for the estimation of 

Anthocyanin levels for the 2015 dataset in Amynteo was 

established with the Gitelson_Chl2 and Gitelson_Chl1 indices. 

 

 

3.5 Estimating BRIX levels for Xinomavro in 2013 

In Table 6, the calculated r2 are presented for the correlation 

between certain band combinations and the reference BRIX 

data for the Greek red variety Xinomavro (with a WorldView 2 

image acquired in 2013 at the Naoussa study area). Taking into 

account the sensitivity of the dominant spectral bands the 

following points can be underlined: 

 

1.  The highest correlation rates were established with an index 

involving the Blue (425 ± 25nm) and NIR1 (R830 ± 60 nm) 

spectral bands.  

 

2. In a similar way as for the Syrah variety and results, the SIPI 

index involving the NIR1 (R830 ± 60 nm), Coastal (425 ± 

25nm) and Red (R660 ± 30 nm) spectral bands also provides 

very high r2 scores. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-919-2016 

 
923



 

3. Compared to the analysis of BRIX results (subsection 3.1), it 

is observed that, in the case of Syrah the correlation between 

BRIX and NIR1 (R830 ± 60 nm) is negative but in the case of 

Xinomavro it is positive. 

 

4. The Normalized Difference between Blue (425 ± 25nm) and 

NIR1 (R830 ± 60 nm) (Blackburn Car2), results in a much 

better score than the simple ratio of those bands (Blackburn 

Car1). 

 

5. Involvement of the Green (R550 ± 60 nm) spectral band, 

seems to provide worse correlations. 

 

BRIX levels for Xinomavro in 2013 

Index involved spectral bands r2 

Blackburn Car2 
R830 ± 60 nm 

R480 ± 30 nm 
82.4% 

SIPI 

R830 ± 60 nm 

R660  ± 30 nm 

R425 ± 25 nm 

79.7 % 

NDVI 
R830 ± 60 nm 

R660  ± 30 nm 
74.9% 

Gamon Anth 
R660  ± 30 nm 

R545  ± 35 nm 
69.6% 

Blackburn Car1 
R830 ± 60 nm 

R480 ± 30 nm 
65.2% 

Gitelson Car2 

R830 ± 60 nm 

R725 ± 20 nm 

R545  ± 35 nm 

65.0% 

Table 6. The highest correlation rates regarding the estimation 

of BRIX levels for Xinomavro in 2013 

 

 
Figure 7. The highest correlation rate for the estimation of BRIX 

levels for the 2013 dataset in Naoussa was established with the 

Blackburn Car2 index. 

 

 

4. DISCUSSION 

Estimation of BRIX, can be achieved with standard 

multispectral bands (Red, Blue, and NIR). However, the 

involvement of Coastal wavelengths can further improve 

results.  Wavelengths in the Green area of the spectrum, had a 

minor yet significant impact on the results. 

 

WorldView-2 satellite imagery can provide high spatial 

resolution data and six spectral bands that are quite useful 

for vineyard management, (Bands: 1-3, 5-7). The RedEdge and 

Coastal wavelengths, in particular, provide additional 

observations for the efficient estimation of grape/must/wine 

biophysical and biochemical properties. On the contrary, the 

Yellow and NIR2 spectral bands, did not significantly 

contribute to the results, but may be useful to study different 

periods of the growing season (e.g. pre-pruning). 

 

The quantitative results regarding the correlations are promising 

and if one considers the already validated results regarding the 

correlation with canopy greenness maps (e.g., Leaf Area Index) 

[Johnson et al., 2003, Kalisperakis et al., 2015, Karantzalos et 

al., 2015] then multitemporal (dense during the season) 

monitoring can deliver further insights regarding the 

relationships between reflectance spectra at particular spatial 

resolution and spectral sensitivity. This can be achieved by 

consistent image acquisitions of several areas over a larger 

timeframe and increased grape/must analysis sampling over that 

period. 
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