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ABSTRACT:   

 

 

Urban expansion, particularly the movement of residential and commercial land use to sub-urban areas in metropolitan areas, has 

been considered as a significant signal of regional economic development. In 1970s, the economic centre of Canada moved from 

Montreal to Toronto. Since some previous research have been focused on the urbanization process in Greater Toronto Area (GTA), it 

is significant to conduct research in its counterpart. This study evaluates urban expansion process in Montréal census 

metropolitan area (CMA), Canada, between 1975 and 2015 using satellite images and socio-economic data. Spatial and temporal 

dynamic information of urbanization process was quantified using Landsat imagery, supervised classification algorithms and the 

post-classification change detection technique. Accuracy of the Landsat-derived land use classification map ranged from 80% to 

97%. The results indicated that continuous growth of built-up areas in the CMA over the study period resulted in a decrease in the 

area of cultivated land and vegetation. The results showed that urban areas expanded 442 km2 both along major river systems and 

lakeshores, as well as expanded from urban centres to surrounded areas. The analysis revealed that urban expansion has been largely 

driven by population growth and economic development. Consequently, the urban expansion maps produced in this research can 

assist decision-makers to promote sustainable urban development, and forecast potential changes in urbanization growth patterns.     
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1. INTRODUCTION 

 

Urban expansion, particularly the increase of built-up areas in 

sub-urban areas in metropolitan areas, has been regarded as an 

important signal of regional economic development (Yuan et 

al., 2005). However, along with fast economic development and 

rapid urbanization process, its benefits are increasingly balanced 

against environmental impacts (Squire & Kubrin, 2005), such as 

the decreasing watersheds, land reclamation, coastline change 

and prominent food production. Therefore, determining how to 

balance economic benefits maximum and environmental 

impacts minimum is a challenging task for decision makers for 

planning, environmental management and land resources 

integration in the process of urban expansion (Yuan et al., 2005; 

Wang et al., 2015).  

 

Remote sensing technology plays a significant role that can 

provide a great amount of data of the Earth surface (Jensen, 

2004). Moreover, satellite images can quantitatively describe 

the spatial structure of urban environment, and provide a cost-

effective and visualized tool to detect urbanization footprints 

(Gutman et al., 2004). Multi-temporal and multi-spectral data 

can be obtained for analysing and monitoring urban expansion 

patterns using remotely sensed imagery (Weng, 2002). For 

example, Alberti et al (2004) indicated that the remote sensing 

technology has the capability to describe changes of land use 

based on timely and accurate geospatial data. Furthermore, in 

combination with geographical information system (GIS) that 

can provide an effective tool to store, analyse, integrate, and 

display geographical information (Malczewski, 1999), remote 

sensing and GIS technologies have been widely applied in 

detecting land use and land cover changes and monitoring 

urbanization process over the last decades (Dewan et al., 2009).    

 

In this study, combined with GIS technique, temporal analysis 

is conducted to detect urbanization process using Landsat series 

imagery from 1975 to 2015 in the Montréal Census 

Metropolitan Area (CMA). Six level-2 classes are assigned: 

residential, commercial, barren cropland, water body, forest, 

and vegetation. The post-classification comparison change 

detection approach is applied, necessitating the selection of an 

appropriate classification algorithm. Since unsupervised 

classifiers need a great amount of work to refine results during 

the post-classification comparison period, several supervised 

classification and machine learning methods have been used, 

such as Maximum Likelihood Classifier (MLC) (Otuker et al., 

2010), Support Vector Machine (SVM) (Schneider, 2012), and 

Artificial Neural Network (ANN) (Erbek et al., 2004). 

Compared with traditional classification classifiers (e.g. MLC), 

the Decision Tree (DT) classifier is a different classification 

algorithm, which is an ensemble consisting of a large number of 

diverse criterions aiming to separate and identify various classes 

(Joelsson et al., 2006). Based on the previous studies, the 

performance of MLC, SVM, ANN and DT classifiers are tested 

according to accuracy assessment, and their relative 

performances are evaluated.  

 

Compared with existing work, there are few studies focusing on 

urban expansion issue in the Montréal CMA using satellite-

based approach. This research intends to examine the dynamic 

change patterns in the urbanization process of the Montréal 

CMA over a period of 40 years. Multiple classification 

approaches are used and urban expansion patterns are evaluated 

in terms of bi-temporal (i.e. between years) and multi-temporal 

(i.e. across all years) analysis from Landsat imagery at 5-year 

intervals from 1975 to 2015. Consequently, quantitative and 

qualitative results of the Montréal CMA urban expansion can be 

examined. The objectives of this study are thus to identify the 

urban expansion patterns and characterize the potential driving 

forces contributing to these changes in the CMA using remotely 

sensed data and socio-economic data. Specifically, the 

objectives are (1) to map temporal land cover categories 

through classification of Landsat series imagery; (2) to assess 

the accuracy of Landsat series classification results derived by 

applying MLC, SVM, ANN and DT algorithms; (3) to analyse 

the tendency of urban expansion in CMA, and to evaluate major 

driving forces that contribute to relevant changes.    

 

 

2. METHODOLOGY 

2.1 Study area 

The study area is the Montréal Census Metropolitan Area 

shown in Figure 1, which is the second most populous 

metropolitan area in Canada after the Greater Toronto Area 

(GTA). This project focuses on the urban expansion and 

population explosion, according to the Statistics Canada, it 

reported that the CMA had a population of 3,824,221, an 

increase of 5.2% from 2006 (Canada 2011 Census). This leads 

to a population density of about 898 people per square 

kilometer. As the total population and population density of the 

Montréal CMA is increasing rapidly, it is suitable for urban 

expansion analysis. The time period chosen are from 1975 to 

2015 because it is a highly developed period of the area. 

Therefore, significant changes of urbanization can be seen 

directly. The Montréal CMA  also includes a diversity of land 

use categories interspersed with large scales of buildings, 

watersheds and more than hundreds of hills. Both high and low 

densities of population are found in the specific portions of the 

Montréal CMA in the past decades (Canada 2011 Census). 

These features indicate the high potential of urbanization 

process in the Montréal CMA. 

 

2.2 Data sources and pre-processing 

Imagery from Landsat-1 and Landsat-2 Multispectral Scanner 

(MSS), Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+), and Landsat-8 Operational 

Land Imager (OLI) were acquired and mainly used to analyse 

land cover changes and urban expansion in the Montréal CMA 

(Table 1). MSS images were resampled to 30m resolution, and 

all reflective bands were applied in image classification 

excluding the thermal band. All these images were obtained 

from USGS with level-one product format, sometimes over two 

images were applied to improve classification accuracy (Table 

2). In order to avoid the influence of snow, most of images were 

acquired from May to October. The World Geodetic System of 

1984 (WGS84) and Universal Transverse Mercator (UTM) 

were selected as coordinate systems. The software Environment 

of Visualizing Images (ENVI) and ArcGIS version 10.3 were 

used to conduct image pre-processing. Layer stacking for all 

images was performed first, followed by images registration. 

Dark pixel subtraction approach was then used to carry out 

atmospheric correction based on unique digital number values 

of each image. Finally, seamless mosaic tool in ENVI was 

selected for mosaicking images with colour balance, and all 

mosaicked images were clipped by the boundary of the study 

area. The Montréal CMA  boundary and census division’s 

boundaries were obtained from Statistics Canada (2011).   

 

Census statistical data from 1971 to 2011 provided by Statistics 

Canada were used to help understanding of urbanization 
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process of the Montréal CMA. The population data were 

released every 5 years by Statistics Canada (2011). These data 

were thus used to analyse the relationship between urban 

expansion and population; in addition, both Consumer Price 

Index (CPI) and Industrial Production Price Index (CPPI) were 

acquired from Statistics Canada to explore their potential 

relationships with urban expansion.  A set of full-colour 

QuickBird 0.6m resolution digital orthoimages in 2006 were 

provided by the Geospatial Centre, University of Waterloo as a 

reference map for accuracy assessment after image 

classification. Moreover, Google Earth very high resolution 

imagery for the Montréal CMA in 2015 was also used as 

reference map. 

 

2.3 Image classification 

Considering major land use categories within the 

Montréal CMA, and combined with spatial resolution of the 

imagery (i.e. 30m), six separate classes then were identified: 

residential, commercial, barren cropland, water body, forest and 

vegetation (Table 3).  

 

Selecting an appropriate classification algorithm to classify the 

imagery can improve the overall accuracy, as the quality of 

classification results directly affect the performance of the 

change detection (Wang et al., 2015). Therefore, determining an 

appropriate classifier is significant. In this study, supervised 

classification methods and machine learning algorithms, 

including MLC, SVM, ANN and DT, were performed on both 

the 2006 and 2015 mosaicked images. Training samples were 

selected for the above six categories based on false colour 

composite of the reflective spectral bands. Based on the Jeffries-

Matusita (JM) distance report, which ranges from 0 to 2 and 

indicates an average distance between a pair of classes 

contributing to how accurate classification results will be, it can 

be therefore used to detect the spectral separability of training 

samples (Schmidt et al., 2003). If the value is asymptotic to 0, 

the selected training samples are more polymerized.   

 

Several indices were applied to generate DT algorithms to 

extract specified class from satellite imagery. Consequently, the 

Soil Adjusted Vegetation Index (SAVI) was used to extract 

vegetation information, as shown in equations (1) to (4); a 

Normalized Difference Bare Index (NDBI) was applied to select 

built-up areas; a Modified Normalized Difference Index 

(MNDWI) was presented to delineate open water features; and a 

Normalized Difference Bare Index (NDBal) for the bare land 

(Hua et al., 2012) was also used.  

 

 

      
       

       
                  (1) 

 

      
              

         
      (2) 

 

       
         

         
         (3) 

 

         
          

          
                 (4) 

 

where      and      represent the spectral reflectance in the 

TM and ETM+ green and mid-infrared bands;      and     

 

 
Fig. 1. Study area – The Montréal Census Metropolitan Area (CMA) 
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Table 1. Introduction of the sensors used in this study 

  

Table 2. Satellite imagery with 5-year intervals used in this study  

 
 

Table 3. Classification categories and descriptions 

indicate the original raw digital numbers value in the 

TM/ETM+ mid-infrared and thermal infrared bands; and   is 

soil adjusted factor, ranging in between 0 and 1. In this case, we 

choose 0.5 to avoid the influence of different backgrounds. 

After image classification, a 3 x 3 majority filter is applied in 

order to eliminate the salt-and-pepper noise to improve 

classification accuracy (Wang et al., 2015).  

 

After classification, accuracy assessment is generated for all 

classified imagery to assess the classification accuracy based on 

testing samples. Congalton and Green (1999) indicated that the 

testing sample size with a minimum of 50 samples for each 

class should be selected in terms of cost-effectiveness. In 

addition, both QuickBird imagery for 2006 and Google Earth 

imagery for 2015 were used to randomly select testing samples 

over 600 pixels (100 samples for each Level-2 class) in order to 

obtain reliable accuracy assessment for both years. Moreover, 

selected samples are manually validated. The error matrices 

therefore are generated, which contain the overall accuracy, the 

user’s accuracy and the producer’s accuracy (Congalton, 1991). 

The user’s accuracy means the probability that a pixel is class A 

given that the classifier has determined the pixel into class A, 

while the producer’s accuracy indicates the probability that the 

classifier has labeled a pixel into class A given that the ground 

truth is class A (Jensen, 2004). 

 

2.4 Change detection 

The post-classification comparison change detection technique 

is applied to detect urban expansion patterns over past 40 years. 
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Thematic maps (Alphan et al., 2009) are then built based on 

separately classified multi-temporal imagery, and comparison 

between the classified images can be implemented in terms of 

per-pixel basis. This technique can provide detailed “from – to” 

information for each class in the process of urbanization 

(Jensen, 2004). Since we only would like to examine urban 

expansion patterns, the classified classes are merged into the 

following two main categories before applying the change 

detection technique: the urban area and the non-urban area, 

which can avoid the influences of misclassification or 

classification errors. Urban expansion then can be analysed 

based on bi-temporal and multi-temporal change detection 

maps. 

 

2.5 Urban expansion statistical analysis 

Wang (2015) indicated that both urban expansion rate and urban 

expansion spatial structure can be varying across time. In this 

study, as shown in Eq. (5), we determine the rate of urban 

expansion using the Land Use Change Index (LUCI) presented 

by Haregeweyn (2012), which can be a significant index to 

assess urban expansion.  

      
      

      
            (5) 

 

where     represents the area of urban at Time a;     represents 

the area of urban at Time b; T is the time period between Time a 

and Time b. LUCI then can describe annual rate of urban areas 

if T’s unit is in years. Consequently, the correlation between the 

urban areas and population can be calculated using Pearson 

correlation coefficient analysis (Wang, 2015). 

 

Table 4. Accuracy assessment comparison among different 

classifiers for the 2006 imagery 

 

3. RESULTS AND DISCUSSION 

3.1 Accuracy assessment 

Error matrices were generated to assess the accuracy of 

classified imagery based on four different classification 

approaches (i.e., MLC, SVM, ANN and DT) to determine an 

appropriate classifier over the study time period. As shown in 

Table 4, the MLC achieved an overall accuracy of 93.79%. In 

contrast, SVM had an overall accuracy of 96.26%, and the 

ANN’s overall accuracy was the highest value of 97.26%. 

These three classifiers performed better than DT’s overall 

accuracy of 89.35%. Both user’s and producer’s accuracies in 

commercial, barren cropland and vegetation in ANN were 

slightly better than the results from other classifiers. Thus, ANN 

classifier was chosen to perform image classification for the 

remaining imagery. To reduce misclassification, several 

classified categories were combined together into either urban 

area or non-urban area. 

 

3.2 Change detection maps and analysis 

As shown in Fig. 2, the bi-temporal change detection map 

indicated an increase in urban area in the Montréal CMA from 

628 km² in 1975 to 1554 km² in 2015. In addition, extracting 

and overlaying the urban area of the multi-temporal classified 

imagery, the 10 year intervals urban expansion change map was 

generated (Figure 3). According to Fig. 2 and Fig. 3, there were 

two main spatial urban expansion patterns in the Montréal 

CMA: centric expansion mode, in which the urban area expands 

from urban centres to surrounding non-urban areas by a series 

of concentric circles (Burgess, 2008);   ribbon expansion mode, 

in which urban area grows along major river banks (e.g., St. 

Lawrence River) and lakeshores (e.g., Lake of Two Mountains). 

The Montréal CMA mainly expanded outward from the city of 

Montreal and along St. Lawrence River. Moreover, several 

major regional city centres, such as Laval, Roussillon, and 

Deux- Montagnes, also experienced rapid urbanization process 

within over past decades. As shown in Figure 3, many regional  

 
Fig. 2. Urbanization process change map for the Montréal CMA from 1975 to 2015 
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Fig. 3. Urbanization multi-temporal change map for the Montréal CMA from 1975 to 2015 with 10-year intervals 

 

    Table 5. Annual urban growth rate from 1975 to 2015 in the Montréal CMA 

 
 

centres were located in isolation, and major cities can be 

identified clearly.  From 1975 to 1985, areas around the city of 

Montreal experienced a significant expansion along their 

boundaries with Montreal. In the 1990’s, the regions of Laval, 

Longueuil, and Terrebonne expanded outward rapidly. All these 

regions developed from their region centres. After 2000, both 

regions of Laval’s and Montreal’s urban expansion rate began 

to slow down, while outside areas (e.g., Mirabel and La Rivi) 

had an increasingly expansion rate of urban areas. From 2006 to 

2015, the most considerable expansion occurred in both 

southwest and northwest regions of the Montréal CMA. 

Therefore, some small regions connected with other cities after 

40 years of urbanization process, such as Mirabel and Les 

Moulins. Furthermore, some cities located both along St. 

Lawrence River and near Lake of Two Mountains, such as 

Longueuil and Vaudreuil-Soulanges, had a considerable 

development.  

 

Overall, the urban areas in the Montréal CMA expanded 

outward from major regional centres, especially from the city of 

Montreal, and also along St. Lawrence River.  

 

 
Fig. 4. Urban area and population statistics in the Montréal 

CMA 1975-2015 

 

3.3 Statistical analysis of urban expansion and driving 

force analysis 

As shown in Table 5, the mean annual growth rate of urban 

expansion in the Montréal CMA from 1975 to 2015 was 1.6%. 

There were several significant urban expansion periods within 

the past 40 years. The periods among 1980-1985, 1985-1990, 

and 1995-2000 experienced 4.1%, 3.9% and 4.6% in annual 

growth rate of urban area, respectively. A decrease in urban area 

period occurring in between 1975 to 1980 may result in image 
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misclassification, since these images were obtained from 

Landsat-1 with 60 metres resolution and only 4 bands were 

available for the classification. From 2006 to 2010, the 

Montréal CMA  experienced a lower annual growth rate of 

0.1% in urbanization process, which may be due to low urban 

expansion rate in this period or lower classification accuracy of 

both imagery. 

 

To reveal the relationship between urban growth rate and 

population, urban area was calculated from classified imagery 

with 5-year intervals from 1975 to 2015 to compare the 

correlation with census data of the Montréal CMA.  As shown 

in Figure 4, both population and urban area experienced an 

increased tendency within this study time period. The chart 

indicated that urban expansion is positively correlated to 

population growth. The Pearson correlation coefficient (r) 

between urban area and population was 0.983 (p<0.01), which 

means strong correlation between these two variables.  

 

When focused on three significant periods of urban expansion 

accompanied with the population growth over the same time, 

the mean annual population growth rate in the past 40 years was 

0.98%; however, the periods among 1981-1986, 1986-1991, and 

1996-2001 experienced annual population growth rates of 

0.43%, 1.41% and 0.6%, respectively. It reflected that urban 

expansion was typically delayed by a few years followed by an 

obvious increase in population.  

 

Bhatta (2010) indicated that urban expansion can be impacted 

on by a large amount of factors, such as population, economic 

development, and industrialisation. In addition, Industrial 

Production Price Index (CPPI) and Consumer Price Index (CPI) 

were also used to analyse their correlations with urban area; 

however, both CPPI and CPI mainly focus on economic 

prosperity, especially for inflation, they have small influences 

on urbanization process (Chen et al., 2013). 

 

4. CONCLUSION 

In this research, spatial and temporal dynamic changes of the 

urban area in the Montréal CMA have been successfully 

detected using Landsat series imagery. The selection of an 

appropriate classifier was a significant factor to reveal detailed 

urbanization process, which had impacts on the final change 

detection results. In our study, ANN was determined to be a 

superior classifier compared to other classification algorithms, 

such as MLC, SVM and DT.  We found that the urban 

expansion mainly occurred in a centric expansion mode, in 

which the city expanded outward from the city of Montreal. The 

Montréal CMA also experienced an expansion mode along 

major river systems, such as St. Lawrence River. Furthermore, 

the urbanization process was strongly correlated with increased 

population.  However, there are still some limitations in this 

research. For instance, only both QuickBird images in 2006 and 

Google Earth images in 2015 were available to select the 

training samples, accuracy assessment therefore may not be 

pretty reliable due to lack of reference maps. 

 

In conclusion, Landsat series imagery can be successfully 

applied to identify the urban expansion patterns of the 

metropolitan areas for a long time period. The extent and spatial 

patterns of the Montréal CMA ’s urban expansion were both 

identified quantitatively and qualitatively in this research. 

Moreover, integrating Landsat imagery and census data is 

feasible to analyse urban expansion in regional scales even 

global scales. Therefore, according to historical development 

patterns combined with current urban development policy, these 

results can be used by decision makers or regional governments 

to promote the Montréal CMA’s economic development in the 

future.  
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