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ABSTRACT:

In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS
databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map match-
ing, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is
reduced.
By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are gener-
ated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position.
In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We
apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the
corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of
the road boundaries, and estimate the camera pose with respect to the global coordinate system.
The proposed approach is evaluated on a benchmark. The position is measured by a smartphone’s GPS receiver, images are taken from
smartphone’s camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed
approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard
deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and
5.899 meters.

1. INTRODUCTION

1.1 Map Matching

The emerging intelligent technologies, such as autonomous driv-
ing, require accurate pose estimation of the platform. The pose of
platform should be accurately estimated with respect to the road
lanes, other vehicles, and the global coordinate system. There-
fore, not only the pose of platform should be estimated in the
global coordinate system, it should also be estimated with respect
to other local coordinate systems, such as road coordinate system
and the coordinate system of other platforms. Figure 1 schemati-
cally shows the platform coordinate system, road coordinate sys-
tem, and global coordinate system.

Figure 1. The platform, road and global coordinate systems are
schematically demonstrated by red arrows.

∗Corresponding author

The ubiquitous outdoor localization technology is Global Navi-
gation Satellite System (GNSS) positioning. The GNSS satellites
cover the whole world and therefore, the position of platform can
be measured everywhere. There are a number of shortcomings in
GNSS positioning: centimeter-level accuracy of GNSS position-
ing requires additional instruments and infrastructure and there-
fore, high accuracy GNSS positioning is costly. In addition, it
requires clear sky view and therefore, the accuracy of GNSS po-
sitioning is deteriorated in urban canyon where buildings block
GNSS signals.

In the absence of GNSS signals, Inertial Measurement Units
(IMUs) are applied to bridge gaps between GNSS outages. How-
ever, it imposes additional cost to the system and IMU’s error
grows over time.

Map matching has been frequently applied to improve the accu-
racy of GNSS positioning. If a Geo-spatial Information System
(GIS) is available, the measured GPS position can be projected
into the center of road links in the GIS database. Therefore, the
lateral error (perpendicular to road link) of measured GPS posi-
tion is mitigated, but the longitudinal error (along road link) of
measured GPS position remains a problem.

In this paper, High Definition (HD) maps are applied to estimate
the location of platform. Therefore, the lateral error is signifi-
cantly reduced despite the fact that longitudinal error remain in-
tact.

1.2 Lane Matching

In HD maps, roads are represented and stored as multi-lines in
the database. A road segment is stored by its boundaries, lanes,
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and possibly its entrances from and exits to other roads. Tradi-
tional map matching approach in which the position is projected
into the road centerline is not sufficiently accurate for emerging
applications, such as autonomous driving. Therefore, HD maps,
with delineated road boundaries and lanes, are applied to project
the position into the correct lane and improve the lateral accuracy
of GNSS positioning.

In order to detect the lane the platform is in, a camera should
be mounted on the platform and images should be utilized. In
addition, the road segment corresponding to the current location
of platform should be retrieved from the GIS database. Using
the image content and road segment, the position of platform is
estimated using homography transformation.

Unfortunately, traffic features are different from a country to an-
other. In the United States, the left road boundaries are delineated
with yellow solid lines and the right one is white, white solid lines
represent road boundaries in Germany, and there are various road
marks to indicate the road boundaries in other countries. In ad-
dition, the road lanes may be represented by white dashed lines
or solid lines. Furthermore, the road lanes may not be marked
and the lane boundaries may be fuzzy. In conclusion, provid-
ing a solution to lane matching for all countries and situations is
cumbersome. We focus on the solution for a regular highway in
the United states, but the proposed approach can be modified for
other countries and road types. Figure 2 shows four different road
marks in various countries.

Figure 2. The road marks are different depending on the road
type and the regulations of the country the road located. The

road boundaries can be marked in yellow or white and solid or
dashed lines. Some roads may not have proper road marks

(courtesy of pexels.com).

1.3 Literature Review

A number of researchers focus on the use of map matching for
urban canyon, where the GNSS signal is blocked. Chu et al. ap-
ply map matching to the GPS/IMU integration and improve the
IMU drifts (Chu et al., 2013). Map matching is applied in the
situations where the GNSS signals are frequently lost (Jimenez
et al., 2016). In addition, the map matching algorithm is investi-
gated for low sampling rate GPS receivers in (Lou et al., 2009). In
(Pereira et al., 2009), the authors propose an off-line map match-
ing algorithm to handle the incompleteness in GIS databases.

Since map matching faces many uncertainties in reality, fuzzy
logic has been frequently utilized to handle these uncertainties.

The researchers use fuzzy logic to identify the correct road link
(Quddus et al., 2006). Balazadegan and Gao also apply fuzzy
logic to find the correct link and use map matching to improve
the accuracy of multi-sensor integration (Balazadegan and Gao,
2016). In (Syed and Cannon, 2004), a high sensitivity GPS
receiver and IMU are applied to localize the platform in ur-
ban canyon and the results are utilized for map matching. Ren
and Karimi use the fuzzy logic based map matching to navigate
wheelchairs (Ren and Karimi, 2012).

Deep Neural Network (DNN) has been applied in some research
to improve the results of map matching. Kim and Lee utilize
convolutional neural network (CNN) and RANdom SAmpling
Consensus (RANSAC) to robustly detect the lanes of road (Kim
and Lee, 2014). Pazhayampallil and Kuan apply deep learning
to detect the lanes and localize the platform (Pazhayampallil and
Kuan, 2013). DeepLanes uses side looking cameras to detect the
lanes and position the vehicle between the lanes (Gurghian et al.,
2016). In (Newson and Krumm, 2009), Newson and his col-
leagues utilize Hidden Markov Model (HMM) to find the most
likely position of the platform in the network. An open source
software is provided for map matching using HMM (Mattheis et
al., 2014).

The lane matching and localization has recently emerged by the
advancement of more accurate maps. In (Rabe et al., 2016),
GPS, camera, and other vehicular sensors are integrated to de-
tect the correct lane and improve the accuracy of positioning. Re-
searchers apply point cloud and GPS data to achieve the lane level
positioning accuracy (Mattheis et al., 2014). In (Tanaka, 2016),
the author uses only the images from visited sites and apply map
matching to improve the results of image based navigation.

2. METHODOLOGY

In this paper, four coordinate systems are utilized: image coor-
dinate system, platform coordinate system, road coordinate sys-
tem, and global coordinate system. It is assumed the image and
platform coordinate systems are calibrated and their boresight
and lever-arm are determined. Therefore, if the transformation
between the image and road coordinate systems are estimated,
the transformation between platform and road coordinate systems
can be calculated. We propose an approach to calculate the trans-
formation between image and road coordinate system using im-
age processing approaches.

Since definition of the road coordinate system depends on the
road segment where the platform is located, we propose an ap-
proach to find the corresponding road segment within the GIS
database. Therefore, the image coordinate system can be trans-
ferred to the global coordinate system and consequently, the pose
of platform is calculated with respect to the global coordinate
system.

2.1 Local and Global Coordinate Systems

In this section, the local and global coordinate systems are de-
fined. The image coordinate system is centered at the left-up cor-
ner of the image, the x-axis is in the direction of column pixels
and the y-axis is in the direction of row pixels.

The camera coordinate system is located at the projection center,
its z-axis is in the direction of principal axis of camera and it is
toward scene. The x-axis is in the direction of row pixels where
the columns are incrementing. The y-axis is in the direction of
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column pixels where the rows are decrementing. It is a right-
handed coordinate system.

The platform coordinate system is located at the phase center of
GNSS receiver, mounted on the platform. Its x-axis is aligned
with the direction of the platform’s forward motion. The z-axis
of platform coordinate system is aligned upward and the y-axis is
aligned in the way it creates a right-handed coordinate system.

The angle between the camera and platform coordinate systems
is called boresight and the displacement vector between these two
coordinate systems is called lever-arm. The boresight and lever-
arm are determined in the calibration stage. The lever-arm can be
neglected since the GPS receiver and camera are located inside
the smartphone. In addition, the angle between x-axis of plat-
form and z-axis of camera are assumed to be zero. Therefore, an
arbitrary position in the camera coordinate system is transformed
to the platform coordinate system, such that:

xp = R3(−
π

2
)R1(−

π

2
)xc (1)

where xc = a point in camera coordinate system
xp = a point in platform coordinate system
R1 = rotation around x-axis of
camera coordinate system
R3 = rotation around z-axis of
camera coordinate system.

The road coordinate system is located at the left road boundary of
the current road segment. Its x-axis is aligned with the direction
of left road boundary toward forward motion of platform. The
z-axis is the normal vector of the road surface and the y-axis is
aligned in the way it creates a right-handed coordinate system.

The transformation between the platform and road coordinate
systems depends on the dynamic of platform. If the ruggedness
of road is neglected, the transformation between these coordinate
system is estimated, such that:

xr = R3(α)xp (2)

where xp = a point in platform coordinate system
xr = a point in road coordinate system
R3 = rotation around z-axis of
platform coordinate system
α = the angle between x-axis of
these coordinate systems.

The road features stored in the GIS database are in the global co-
ordinate system. The global coordinate system is a geodetic co-
ordinate system with the World Geodetic System 1984 (WGS84)
ellipsoid. In other words, the features are represented in latitude,
longitude, and height. The transformation between local coordi-
nate system, such as road coordinate system, and global coordi-
nate system is given in (Jekeli, 2001).

As a result, we determine the platform’s pose with respect to the
global coordinate system after the transformation between cam-
era coordinate system and road coordinate system is estimated.

2.2 Finding the Corresponding Road Segment

The HD maps are humongous since they contain the details of
roads for a large area. Roads are multi-lines and can be as long as
a few hundred kilometers. Usually, the left and right road bound-
aries are represented by two multi-lines. The road marks sep-
arating lanes are also shown by multi-lines. A single line of a
multi-line feature is called road segment. The road segment that
is the closest to the platform should be selected. When this road
segment is found, every feature represented by a multi-line is re-
duced to a line corresponding to the road segment.

It is impossible to find the corresponding road segment without
GNSS positioning. In the proposed approach, we first reduce the
search space for the corresponding road segment to a few candi-
dates. A circular buffer centered at measured GPS position is ap-
plied to the road features in the GIS database and the vertexes of
multi-lines which fall outside the buffer are removed. Therefore,
the number of candidates for the road segment significantly re-
duces. Among these candidates, the Euclidean distance between
measured GPS position and each candidate is calculated and the
one with minimum distance to the measured GPS position is se-
lected. When the corresponding road segment is selected, the
other attributes of the road segment, such as color or functional-
ity of each road mark are retrieved, in addition to the geometrical
properties of the road mark.

Whenever the platform moves, the road segment should be re-
selected. Most of the time, previously selected road segment will
be the corresponding road segment at the current time. There-
fore, if the correct road segment is found for the current time, the
current road segment should be compared to the next road seg-
ment for the next time and the one with minimum distance to the
measured GPS position should be selected.

In traditional map matching, the measured GPS position is pro-
jected into the center of corresponding road segment. In our pro-
posed approach, we use the road boundaries of the corresponding
road segment and find the position of platform between the road
boundaries. Therefore, our proposed approach suppresses lateral
error better than the traditional map matching.

2.3 Road Boundary Detection

In order to localize the pose of platform, we exploit the road
boundaries. There are a number of advantages to use road bound-
aries rather than road lanes: The road boundaries are solid lines
and therefore, they are prominent features and easier to detect;
The marks of the road lanes are dashed and can be occluded by
other vehicles; The lanes are not separated with road marks in
some roads and lane boundaries are fuzzy.

The left road boundary is delineated by a solid yellow line and
right road boundary is marked by solid white line in the United
States, where we evaluate our proposed approach. Due to differ-
ent illuminations, the yellow and white colors of road boundary
may be shifted to other colors. In order to prevent this shift, the
Red, Green, and Blue (RGB) color space is converted to Hue,
Saturation, and Value (HSV) color space. HSV color space is
more resilient against different illuminations. We applied upper
and lower thresholds on hue component of HSV color space to
find the yellow color. Low saturation and high value colors are
also rejected since they represent too light and dark colors. This
threshold results in a binary mask where the yellow pixels are
one and other colors are zero. In Figure 3 (down-left), the yel-
low color is masked in the image and only the left road boundary
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remains. The white mask is constructed by masking high satura-
tion. The masked white color is shown in Figure 3 (up-right). In
order to separate the left and right road boundaries, the image is
divided into the left and right parts and the Hough transform is
applied to left and right parts to fit a line to each road boundary.
The fitted lines to road boundaries are shown in 3 (down-right).

Figure 3. The original image (up-left) is masked by white and
yellow colors (up-right and down-left), the Hough

transformation is applied to binary images and the left and right
road boundaries are modeled by two lines (down-right).

Theoretically, a line passes through every two pixels on the left
and right road boundaries. The Hough transform detect the line
that passes through most of pixel pairs and therefore, it detects
the most prominent line.

2.4 Lane Level Localization

Since the road surface is a plane, there is a homogrpahy transfor-
mation between the projective geometry of image space and Eu-
clidean geometry of object (road) space. The left and right road
boundaries are parallel lines in the object space, but they intersect
at the point of infinity under projective geometry in the image
space. The homography transformation can be applied to con-
vert the projective view in the image space into the object space.
When the homogrpahy transformation is estimated, the camera
pose can be calculated with respect to the road if the camera is
calibrated.

Theoretically, at least four corresponding points or (nonparallel)
lines should be known in the image and object spaces in order
to estimate the homography transformation. Unfortunately, only
two lines, the left and right road boundaries, are known in the
image and object spaces. Therefore, the homography estimation
cannot be performed without additional assumptions.

Let’s assume the first visible point on the road is D meters far
from the camera. We assume D is 5 meters considering the hood
of vehicle blocks the closer points on the road. If a horizontal line
is drawn in the image which passes through this point, it intersects
with the left and right road boundaries at p1 and p2. Let’s assume
the distance between p1 and p2 is d. We can draw a horizontal
line in the way it intersects the left and right road boundaries at
p3 and p4 and the distance between these points is d

2
. It can be

easily proven that the distance of this line from the camera is 2D,
assuming the road width does not significantly change.

These assumptions may not be accurate, but they only affect the
longitudinal component of the homography estimation and its lat-
eral component is sufficiently accurate.

After these assumptions, we have four corresponding points in
the image and object spaces and the homography transformation
is estimated using these points. If the camera is calibrated and its
intrinsic parameters are known, the homography transformation
is decomposed into its rotation matrix and translation vector.

3. EXPERIMENT

Our proposed approach is evaluated using a benchmark provided
by ”Lane Level Localization, University Grand Challenge” (Lane
Level Localization, University Grand Challenge, 2016). The po-
sition of platform is measured using the GPS receiver inside a
smartphone. The accuracy of the measured GPS position is poor
and its error exceeds 50 meters in some regions. The ground truth
of platform’s position is measured using Real-Time Kinematic
(RTK) technique.

The smartphone is mounted inside a vehicle and its camera
records a sequence of images of the road. The images have
800× 600 resolution and are taken in 10 Hz. The focal length is
fixed, but the camera calibration parameters are not accurate. The
images suffer from motion blur since the platform is in motion.
In addition, the illumination is not uniform and some images are
overexposed or underexposed. Some of the problematic images
are shown in Figure 4.

Figure 4. There are a number of challenges in the road boundary
detection. The images can be underexposed or overexposed

(up-left); the shadow can lead to incorrect lane detection since
the brightness of image abruptly changes (up-right); the road

boundaries are occluded by other vehicles (down-left); The road
can be curvy and fitting a line to the curvy road may be

cumbersome (down-right).

The provided HD map includes road boundaries, road lanes, road
entrances and exits, curbs, and crash barriers. These objects are
represented as multi-lines with several attributes such as color,
type, and functionality. The HD map features are highly accurate
and contain detailed information. Table 1 shows the road bound-
aries and lanes in the GIS database.

The data was collected over 20 kilometers of US highways. The
highway has multiple lanes, marked by dashed white lines and
the quality of road marks is good. The platform changes its lane
on a few occasions. Figure 5 demonstrates the GPS trajectory in
red and ground truth in green.

4. RESULTS

The GPS receiver of the smartphone, mounted on the platform,
measures the position of platform. The position also is estimated
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Table 1. A road segment in JSON format stored in the GIS
database.

”id”: ”1”,
”lines”: [
{ ”id”: ”a66731099”,
”type”: ”boundary”,
”function”: ”left”,
”color”: ”NULL”,
”polyPoints”: [
{ ”coordinates”: 37.849781,-122.23068,119.511 },
{ ”coordinates”: 37.849752,-122.23056,119.269 } ] },
{ ”id”: ”07bc237a4”,
”type”: ”solid”,
”function”: ”left”,
”color”: ”yellow”,
”polyPoints”: [
{ ”coordinates”: 37.84993,-122.23069,119.465 },
{ ”coordinates”: 37.849733,-122.23051,119.185 } ] },
{ ”id”: ”e0e95a051”,
”type”: ”dashed”,
”function”: ”middle”,
”color”: ”white”,
”polyPoints”: [
{ ”coordinates”: 37.849732,-122.23064,119.353 },
{ ”coordinates”: 37.849027,-122.23055,119.108 } ] },
{ ”id”: ”a5950c220”,
”type”: ”solid”,
”function”: ”right”,
”color”: ”white”,
”polyPoints”: [
{ ”coordinates”: 37.849714,-122.23067,119.343 },
{ ”coordinates”: 37.849224,-122.23061,119.015 } ] },
{ ”id”: ”6c196c98b”,
”type”: ”boundary”,
”function”: ”right”,
”color”: ”NULL”,
”polyPoints”: [
{ ”coordinates”: 37.849451,-122.2307,119.253 },
{ ”coordinates”: 37.8484,-122.23067,119.203 },
{ ”coordinates”: 37.849744,-122.2306337,119.006 } ] } ],

Figure 5. The smartphone’s GPS data has been shown in red and
ground truth in green. The error of measured GPS position

exceeds 50 meters in some regions.

using our proposed approach. These positions are subtracted
from the ground truth and the position error is calculated in every
epoch. The results are shown in Figure 6. The measured GPS
position error is shown in red and the estimated position error in
our proposed approach is shown in blue.

The results show the error of measure GPS position is signifi-
cantly reduced and therefore, the position accuracy is improved
using our proposed approach. In other words, the proposed ap-
proach mitigates the lateral error of the measured GPS position.
However, the longitudinal error in the measured GPS position is
not necessarily reduced.

Table 2. The measured GPS position error using smartphone’s
GPS receiver and the estimated position error using our

proposed approach are compared in this table. The mean and
standard deviation of error position are given for each approach.

error in error in
measured position estimated position

mean
[m] 11.323 6.725

standard deviation
[m] 11.418 5.899

The mean error in the measured GPS position and the estimated
position using our proposed approach are 6.725 and 11.323 me-
ters. Their standard deviations are 5.899 and 11.418 meters. The
results are given in Table 2.

The longitudinal error in the measured GPS position may lead to
the incorrect GIS segment detection. The wrong choice of the
GIS segment may introduce lateral error in estimated position.
For this reason, the estimated position using our proposed ap-
proach has larger error than the measured GPS position in a few
epochs.

There are a few sharp jumps in the error of measured GPS po-
sition around 80 and 160 seconds. In these areas, the GPS sig-
nals are blocked by trees and bridges and therefore, the error of
measured GPS position is large due to the signal blockage and
bad geometry of the visible satellites. The proposed approach
significantly mitigates these jumps, but it cannot plateau the po-
sition error. The proposed approach improves the lateral error,
but does not necessarily improve the longitudinal error. There-
fore, the longitudinal component of the position error remains in
the estimated position. There are some approaches to mitigate
the longitudinal error. For instance, traffic signs can be utilized to
suppress the longitudinal error and improve the position accuracy.

The measured GPS position has higher variance and it irregularly
changes. The estimated position using the proposed approach
shows more predictive behavior than the measured GPS position.
This predictable behavior is crucial for statistical models such as
the Kalman and particle filters. Therefore, the statistical models
are more robust using the estimated position.

The estimated position using our approach shows superior perfor-
mance over the measured GPS position. However, the error in the
estimated position does not go lower than 3 meters. It is because
of the fact that the longitudinal error still exists in the estimated
position.

5. CONCLUSION

In this paper, we utilize the image content to estimate the posi-
tion of platform with respect to the road. The platform’s position
can be transferred to the global coordinate system if HD map is
available.
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Figure 6. The error of measured GPS position is shown in red
and the estimated position error is shown in blue. The results

show our proposed approach can significantly improve the
position accuracy.

The proposed approach has been applied for the measurements of
a smartphone’s GPS receiver and the results of our proposed ap-
proach shows superior performance over measured GPS position.
In addition, jumps in the position error are significantly mitigated
using our proposed approach.
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