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ABSTRACT: 

Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g. 
Virtual/Augmented Reality) and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building 
use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery 
and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant 
semantic information automatically from Street View (SV) imagery. Convolutional Neural Networks (CNNs) proved to be extremely 
successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic 
provision of such training datasets by linking semantic information as already available from databases provided from national mapping 
agencies or city administrations to the corresponding façade images extracted from SV. Finally, we present first investigations with a 
CNN and an alternative classifier as a proof of concept.  

1. INTRODUCTION

Over the last few years, there has been a shift in photogrammetry 
and geoinformation applications from pure geometric 
reconstruction of virtual cities to ‘intelligent’ data, models with 
semantics. Building Information Modeling (BIM) and Smart 
Cities currently are hot topics. These applications feed on a 
multitude of data sources. However, this reveals a discrepancy at 
the same time - semantic information as required for a multitude 
of applications like urban planning and infrastructure 
management, includes building use, number of dwelling units 
and more (Hecht, 2014). A key information, from which several 
other metrics can be derived or at least be approximated, is the 
aforementioned building use. Therefore, we see a need for large-
scale automatic building category classification. The following 
paper proposes an approach to leverage Google‘s region wide 
available Street View data and link the inherent buildings with 
data from the digital city base map provided by the City Survey 
Office Stuttgart. To extract only building-relevant parts from the 
Street View data we pre-process the images. Therefore, we utilize 
metadata provided by the Street View API (Google Developers, 
2017) and take advantage of a Deep Learning framework for 
semantic image segmentation (Long et al., 2015) to analyze our 
data for relevant content. Based on the information obtained in 
the crawling process we try to link image content with building 
polygons in the ground truth. The outcome is a tuple of building 
images and its corresponding building category. This data is then 
used to train a classifier. With the trained classifier it will be 
possible to predict building categories for new input images. First 
experiments are focused on investigating  the potential of a Bag-
of-Words (BoW) approach and a pre-trained CNN.  

For now, we want to distinguish between four different building 
use types: residential (purely residential use), commercial 
(purely commercial use), hybrid (mixture of commercial and 
residential use) and special use (which can be a building use of 
anything else, for example: churches, hospitals, museums, but 
also construction sites). The remainder of this paper is structured 
as follows: in section 2 we give a brief review on urban 

classification using semantic segmentation and deep learning, 
section 3 describes our approach for the generation of training 
data to perform building use classification, section 4 shows some 
first results and in section 5 we discuss and draw some 
conclusions.  

2. RELATED WORK

Within this section, several topics of related work are discussed. 
Section 2.1 briefly gives an overview of the subject of Urban 
Classification as a whole. In section 2.2 we more specifically 
address Semantic Segmentation for Urban Scenes. Finally, 
section 2.3 investigates recent related work in the field of Deep 
Learning.  

2.1 Urban Classification 

Urban classification can be hierarchically divided regarding the 
type of data acquisition the classification is based on. Satellite 
data provides information to perform classification with respect 
to different land use, based on hyperspectral analyses. (Hoberg et 
al., 2015) present a multitemporal and multiscale classification 
based on Conditional Random Fields (CRF). As well as there are 
several approaches to perform building outline detection from 
satellite imagery (Niemeyer et al., 2014). With aerial data 
acquisition, urban classification typically further diversifies – not 
only building outlines are extracted (Ortner et al., 2007), but 
typically the scenery is divided into vegetation, ground and 
buildings. Besides pure 2D image segmentation, state-of-the-art 
is to use 3D point cloud information obtained from dense image 
matching (Haala and Rothermel, 2015) or LiDAR (Guo et al., 
2011). Data obtained by LiDAR systems can either stem from 
airborne laser scanning (ALS) or terrestrial – either static (TLS) 
or mobile (MLS). Particularly MLS data is in the focus of urban 
classification and will be discussed in the next section.  

2.2 Semantic Segmentation for Urban Scenes 

When dealing with terrestrial urban data a great number of tasks 
is tackled in literature. In (Weinmann et al., 2015) several 
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approaches (e.g. Nearest Neighbor, Decision Tree, SVM, 
Random Forest, Multilayer Perceptron) are investigated to 
classify MLS point clouds into semantic urban classes like 
façade, ground, cars, motorcycles, traffic signs and pedestrians. 
They report that Random Forests provide the best trade-off 
between accuracy and efficiency.  Wang et al. (2015) presented 
an approach for holistic scene understanding, which reasons 
jointly about 3D object detection, pose estimation, semantic 
segmentation and depth reconstruction from a single geo-tagged 
image by using a holistic CRF. Similarly, (Xiao and Quan, 2009) 
use pairwise Markov Random Fields across multiple views to 
perform semantic segmentation for Street View images. We are 
aware of the large body of literature concerning building façade 
segmentation and interpretation. However, since we do not aim 
on extracting individual façade parts such as windows and doors 
in the presented work, but rather want to determine a specific 
building use category, we are not covering this topic here. An 
extensive overview on urban reconstruction, including façade 
interpretation can be found in (Musialski et al., 2013). 
 
2.3 Deep Learning  

Recent years have shown rapid development in CNN designs, 
performances and applications. Deep Learning is not only 
successfully applied in speech recognition (Hinton et al., 2012) 
and natural language processing (Collobert and Weston, 2008) 
tasks but also state-of-the-art for image classification and 
segmentation nowadays (Russakovsky et al., 2015, Everingham 
et al., 2012). Recent work proposed an approach to generate full 
sentences that describe image content (Karpathy and Fei-Fei, 
2015). With regards to urban data, (Weyand et al., 2016) 
presented an approach that treats the photo geo-location problem 
as classification problem, in contrast to the more popular strategy 
of framing it as an image retrieval problem. They subdivide the 
earth into thousands of multiscale, geographical cells and train a 
deep network (PlaNet) using millions of geotagged images. For 
a query image, PlaNet outputs the probability distribution over 
the surface of the earth. The same task is addressed by (Hershey 
and Wulfe, 2016). They use a GoogLeNet model, pre-trained on 
a scene classification data set, to geo-locate images taken from 
GSV from 10 different cities. They report human exceeding 
accuracy of 75%. The work of (Movshovitz-Attias et al., 2015) 
uses SV images for the classification of storefronts, more 
specifically the classification into business categories. They 
create a large training data set by propagating business category 
information with help of an ontology that uses geographical 
concepts. For learning, they also use a network based on 
GoogLeNet. With a top1 accuracy of 69%, they are 
approximately at human level. 
 

 
3. REGISTRATION OF IMAGE DATA WITH 

BUILDING USE CATEGORY 

This part is structured as follows: in section 3.1 we describe the 
crawling process to extract georeferenced façade images from SV 
data. Selection and preprocessing of images to provide suitable 
image patches for classifier training is covered in section 3.2. 
Finally, in section 3.3 we elaborate on linking image patches to 
existing semantic information using coarse georeferencing 
information from Street View. 
 
3.1 Urban Image Crawling 

A crucial element in performing classification tasks is to obtain 
an appropriate number of training samples. Frequently, these are 
available from datasets and benchmarks within the fields of 

Computer Vision and Machine Learning. The SUN database 
(Xiao et al., 2010) consists of almost 4000 object categories but 
there are only slightly over 1000 images containing buildings. 
ImageNet (Deng et al., 2009) provides over 20,000 indexed 
synsets (synonymous word fields) and over 14 million images in 
total.  
 
There are also several benchmarks for urban scenes – (Geiger et 
al., 2013) developed a mobile mapping platform and host KITTI, 
a benchmark with data for a variety of vision tasks from stereo 
matching, over scene flow to semantic segmentation. Likewise, 
the CITYSCAPES dataset provided by (Cordts et al., 2016) 
contains scenes from 50 cities with corresponding semantic 
pixelwise annotations for each frame, obtained by a windshield-
mounted stereo camera system. For these datasets, GPS 
information of the car’s trajectory is available. However, for our 
task these datasets are not suitable since we aim on assigning 
specific usage categories to buildings. We take another path and 
make use of municipal surveying data in combination with a 
publicly available image source. This way we can narrow down 
amd merge the variety of building categories, and enforce 
correctness of ground truth. There are several reasons why we 
pursue the proposed framework at all, when there are already 
huge CNNs that classify hundreds of categories with a reasonable 
level of correctness, including classes like apartment building or 
office building. First, those very deep CNNs developed by 
companies are fed with massive amounts of training data – not 
everybody can provide or produce those huge collections of 
training examples. Moreover, large CNNs have a broad range of 
category types they cover, while our work aims on a small subset 
of those classes. We are not interested in classifying a plethora of 
different categories, but rather very few, with potentially high 
intra-class variance. The evaluation of state-of-the-art 
approaches with a multitude of classes is frequently based on the 
top5 error, however, since we aim on the determination of a 
rather limited number of classes at a rather high reliability, the 
top1 error is our main interest. 
 
The actual crawling is implemented in Java Script based on 
(Ashwell, 2015) modified for our use. As output from the 
crawling process, we obtain a list of positions ௜ܲ(longitude 
௜ߣ , latitude ߶௜) and headings ߢ௜, where ݅ = 1, . . . , ܰ, with ܰ as 
the total number of crawl positions. By dragging the Google 
Maps marker one can define the initial crawling position. Using 
the Street View API the crawler searches for the next available 
panorama based on the current position. Figure 1 shows the 
crawling interface with the initial Street View on the left and all 
crawled panoramas on the right. We use two different modes of 
crawling: panorama-link based and random sampling. The first 
method successively visits the link nodes stored in the current 
panorama until a predefined total number of panoramas is 

fetched. However, this method only returns the center heading 
௖೔ߢ

 of the street view car for this position. Therefore, when using 

Figure 1. Left: Initial crawling position. Right: Markers depicting 
each crawled position after process has finished. 
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panorama-link based method we add 90° to ߢ௖೔
 – thereby we 

obtain frontal views of the buildings. When using the random 
sampling technique, we generate random offsets for latitude and 
longitude, thereby performing a random walk of the geographical 
position. To prevent from excessive divergence we reset to the 
initial position in predefined intervals. Based on the randomly 
sampled positions we then search for the nearest panorama and 
calculate the heading. Outcome of both crawling processes is a 
list of 2D geographic coordinates and a corresponding heading 
 ௜. We use this data together with the parameters pitch Φ andߢ
field of view (FOV) to query an image Ι௜ as part of the panorama 
via the Street View API. Φ is measured positively looking 
upwards with respect to the camera’s initial horizontal position. 
We chose Φ = 15° and ܱܨ ୦ܸ୭୰୧୸୭୬୲ୟ୪ = ܱܨ  ୴ܸୣ୰୲୧ୡୟ୪ = 90° to 
ensure that also larger buildings are covered.  
 
3.2 Extraction of building-relevant images 

We aim on the extraction of good training data, which are images 
with clear view onto only one single building in center. However, 
many of the initial crawled images do not meet those 
requirements (see also section 3.2.1 and section 3.2.2). 

Thus, after fetching the Street View data we preprocess all 
images Ιଵ…ே to extract only samples with relevant content. One 
tool we use to analyze the images is a reimplementation of a Fully 
Convolutional Network (FCN) (Long et al., 2015) provided by 
(Caesar and Uijlings, 2016). This end-to-end/pixel-to-pixel 
trained network uses “raw” images as input and produces a 
semantic pixelwise labelling. We use the FCN-16s SIFT Flow 
model, which is based on the SIFT Flow dataset with roughly 
3000 images and their corresponding pixel labels. In total, there 
are 33 semantic categories like awning, balcony, bird, over 
mountain, person to tree and window. However, there are not 
only semantic, but also geometric labels – the FCN can learn a 
joint representation and predict both. We are not interested in all 
of those classes. Effectively, we only want to detect whether or 
not a building is the actual main content of the current image. 
Hence, we merge several classes – for example, we merge 
awning, balcony and window to the building class. Similarly, we 
merge grass and tree to the plant class. 
 
3.2.1 Occlusions: As stated in the previous section, we have 
to ensure, that the main image content is the building of interest. 
Thus, as a first step of processing the crawled urban imagery, we 
use the described FCN to perform a pixelwise segmentation. By 
using the merged classes introduced in the previous section we 
obtain results like depicted in Figure 2 on the right. If the main 
content of our segmented image consists of plant or car pixels, 
we discard this image. 
 

 
3.2.2 Blurred Images: Each building owner has the legal 
right to demand Google to make his or her private property 
unrecognizable within the Street View data. Google approaches 
this the same way they anonymize persons – by blurring the 
affected buildings. Obviously, we want to discard those images 
since there is no actual content provided. There has been a lot of 
work on edge-based blur detection (Ong et al., 2003; Narvekar et 
al., 2011). In fact, edge detection delivers quite consistent results 
in our case, as shown in Figure 4. However, as we incorporate 
the aforementioned FCN, we can make use of a particular 
property when evaluating images. In that framework, blurred 
regions are typically classified as sky or sea pixels and can thus 
be detected easily. 
 

   

  

   
Figure 4. From left to right: SV images with ascending level of 
blurriness. From top to bottom: SV input data, edge images, 
output of the FCN evaluation. The colour coding in the last row 
is the same as in Figure 2. 
 
3.3 Linkage of images with correct ground truth 

Our ground truth data consists of a 2D shape file with ground 
plan polygons for each building, enriched with several aspects of 
semantic information like address, communal district, building 
block number and, especially of our interest, building use. For 
each building polygon ܤ ௝ܲ we calculate its centroid ܿ ௝, where ݆ =
1, … ,  .as the total number of buildings in the data set ܯ with ,ܯ

Figure 2. Input image and corresponding output from the FCN 
evaluation. The semantic class building is depicted in blue, sky
in red, road in yellow, plant in green and car in bright blue, 
respectively. 

Figure 3. Left: Building Polygons BPଵ…୩ of Neighbourhood NH୧, 
based on crawling position P୧ (depicted with a red cross, see also 
Figure 6); Right: Corresponding SV image Ι୧. 
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Once it is ensured, that there is actual building content contained 
in Ι୧, we have to link it to the correct corresponding ground truth. 
Here, we make use of the previously gathered data from the 
crawling process - we know the actual positions ௜ܲ, for each 
obtained SV image. However, these positions are in geographic 
coordinates. Ground truth data is located in the Gauß-Krüger 
coordinate system. Therefore, we perform a datum 
transformation between geographic coordinates and the reference 
coordinate systems from the national mapping agency. 
Subsequently, for each ௜ܲ we carry out a nearest neighbour (NN) 
search in the ground truth dataset based on the centroids ௝ܿ for 
each building polygon and extract ݇ candidates ܤ ଵܲ…௞ Those 
buildings depict our neighbourhood ܰܪ௜, in which we have to 
find the actual building displayed in the image, denoted as Γ௜. To 
obtain the correct Γ௜ we have to address several issues, covered 
in the following now. 
 
3.3.1 Interiors:  In the crawling process, especially the 
random sampling approach is not limited to the required street 
level imagery but potentially also provides images from interior 
panoramas. To eliminate such data, typically covering shops, 
public institutions and suchlike, we take ௜ܲ and perform a point-
in-polygon for each ܤ ଵܲ…௞ in ܰܪ௜. If the test returns true for one 
of the polygons, Ι୧ contains indoor scenery and is discarded. 
However, too limited geolocation accuracy of these interior 
panoramas might lead to an actual position outside the building. 
In future work we have to counteract this problem since the 
semantic segmentation FCN is trained for outdoor scenes and 
hence does not provide useful information in this case. Once 
interiors are handled we make use of the heading information ߢ௜ 
to construct a line of sight ߰௜ with the corresponding predefined 
ܱܨ ௛ܸ/௩. We limit the length of ߰௜ to 20 meters, to ensure Γ௜ is 
the central content of Ι୧. In the next step, we determine whether 
߰௜ hits any of the polygons ܰܪ௜. 
 
3.3.2 Multiple Hits and Viewing Angle Dependency: To 
verify whether or not there exists a suitable Γ௜, we use the line of 
sight ߰௜ and perform a test for intersection with BPଵ…୩. If there 
are intersections, we call this a hit ܪሺଵ…௛ሻ. However, it is possible 
that we obtain multiple hits. The second hit is likely to be the 
intersection of the same ܲܤ on its rear or side part. For multiple 
buildings in close proximity, there can be more than two hits. 
If this occurs, we simply sort ܪଵ…௛ by distance to  ௜ܲ and take the 
candidate with the shortest Euclidean distance as our correct hit 
 ௦. Multiple hits are more likely if the viewing angle onto Γ௜ isܪ

very flat. Not only therefore we want to avoid flat viewing angles 
but mainly due to the reason, that we do not consider those 
samples as good training input. Ideally, we aim on quasi-frontal 
shots of the building façades. Thus, we proceed as follows. First, 
we determine our hit ܪ௦ and detect the edge where Γ௜ is 
intersected. This edge is considered our façade plane. On the 
location ܪ௦ we construct the façade normal ௙ܰ  and determine the 
angle ߙ between ௙ܰ and ߰௜, representing our viewing angle 
(Figure 6). Ideally, ߙ would be close to zero. The viewing angle 
depicted in Figure 3 is still in order, however if ߙ exceeds a 
certain threshold we discard this image candidate. In the future, 
we plan on not only considering the central line of sight ߰௜ but 
also the bounding rays for our ܱܨ ௛ܸ/௩, in cases where the hit of 
߰௜ might not represent the actual central building content but 
rather a different building polygon within the bounds of the 
ܱܨ ௛ܸ/௩. Figure 5 depicts crawled imagery for all four classes. 
The first two rows show examples we consider as good, whereas 
the last row demonstrates some negative examples. 
 
4. STREET-VIEW BASED IMAGE CLASSIFICATION 

At the moment, we limit our classification problem in terms of 
the number of classes. Thus, one might argue about the classifier 
of choice. From our point of view it is worthwhile not to restrict 
ourselves to handcrafted features like HOG, SIFT or SURF but 
also investigate in learned features from CNNs. Several works 
show, that on small-scale datasets with homogenous distribution, 
performance of handcrafted features can be considered on a par 
with learned ones. Whereas increased and more heterogeneous 

datasets lead to superiority of CNNs (Antipov et al., 2015; 
Fischer et al., 2014). Since we are crawling Street View images, 
we effectively have a vast amount of training data available – our 
limiting factor is the availability of correct ground truth for the 
building use. 
 
4.1 Bag-of-Words Classification 

For comparison, we applied an already existing implementation 
of a Bag-of-Words classifier, based on SURF features and a 
multiclass linear SVM. The underlying training and test database 
is described in section 4.2 in more detail. The original training set 
is randomly split in 80% actual training and 20% validation set. 
SURF features for each image are extracted and subsequently 
clustered using K-Means to create the visual vocabulary. Based 
on this vocabulary a multiclass linear SVM is trained on the 
training set and evaluated on the validation set. Average accuracy 
on the validation set is only 62%, same holds for average 
accuracy on the training set, which is at 63%. This classifier is 
now applied to a test set with available ground truth (the same as 
in section 4.2). The average accuracy here is at 41%. Obviously, 
those results are not really useful, thus an alternative approach is 
required. 

  

  

 
Figure 5. Columns: Our four classes (f.l.t.r): commercial, hybrid, 
residential, special use. The first two rows depict samples 
considered to be good, whereas the last row shows bad examples. 
 

Figure 6. Viewing angle dependency. The red bounding box 
depicts the detected Γ୧. The straight line emerging from Γ௜ is the 
façade normal, whereas ߰௜ is depicted in green. ߙ is the enclosed 
angle between those lines.  
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4.2 Pre-trained Convolutional Neural Network 

The data we use for training and testing the CNN is the same as 
in section 4.1, therefore we further elaborate on it here. 
Our training set consists of 8000 images (4 classes, each 2000 
images) and the validation set contains at least 70 images per 
class. However, the original training set is smaller – roughly 2200 
images with a distribution of 19% commercial, 22% hybrid, 43% 
residential and 16% special use. Thus, we use data augmentation 
to provide an equal number of training samples for each class. 
Therefore we randomly pick images and randomly perform one 
of these three manipulations: 1.) flip image on its vertical axis, 
2.) crop and resize to original dimension, 3.) define random 2D 
affine transformation (in certain range), warp the image and 
resize to original dimension. 
For our first proof of concept we use transfer learning on the 
imagenet-vgg-f model from (Chatfield et al., 2014). For further 
information about the architecture, we would like to refer to the 
reference. To adapt this network to our needs we remove the last 
two layers (the fully connected fc8 layer and the softmax layer) 
and add a custom fc8 layer, which only has an output data depth 
of 4 as opposed to the original output depth of 1000. As final 
layer we add cross-entropy because we want to determine loss. 
Additionally, we add two dropout layers between fc6 and fc7, as 

well as between fc7 and fc8, with a dropout rate of 0.5 each – 
since they were probably removed in the testing phase of the 
original network. During training phase, we use jittering to 
reduce overfitting. Within each training batch we randomly flip 
and crop images. On top of that, we apply an alternation of the 
RGB channel intensities using PCA, as reported in (Krizhevsky 
et al., 2014). We use a batch size of 40 images and a fixed 
learning rate ߟ = 0.0001. After 96 epochs, the top1 training error 
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Figure 8. Predictions of the approach described in section 4.2, depicted in the shape of a classification matrix. The main 
diagonal entries are correct predictions. Please note how some of the actual ground truth labels themselves are sometimes 
ambiguous or the correct class is even for humans hard to identify.  Example 1: row 2, column 4 was classified as hybrid 
but has the ground truth label special use – actually this is a care facility and we class the entirety of care facilities as special 
use. Example 2: row 4, column 3 is clearly a building under construction, though the residential label is obviously correct 
– but we trained the network on several construction sites with the label special use, therefore the respective prediction. 
(Note: special use class is labelled with unknown in the images here.) 
 

Figure 7. Top1 error after 96 epochs. Training is depicted in blue, 
validation in red. 
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is at 0.725% and the top1 validation error is at 21.4% (Figure 7). 
We run this on a test set (the same as for the BoW classifier), 
which however also contains images from the evaluation set. 
Here, we obtain an average accuracy of 75.9%. In Table 1, the 
results for precision and recall are depicted. With 85%, the 
precision for residential is best, whereas the special use category 
is with 63.3% at the lower end. This is most likely due to the high 
intra-class variance of the special use category, whereas the 
residential class is more homogenous in terms of visual 
similarity. In Figure  8, some examples of the classification are 
provided. We depict correct and wrong examples in terms of a 
confusion matrix. Columns represent ground truth, rows are 
predictions from the CNN, correspondingly. Correctly classified 
images are therefore displayed on the main diagonal, all 
remaining images are wrong classifications. 
 

 Recall Precision 

Commercial 0.7162 0.7260 

Hybrid 0.7680 0.8067 

Residential 0.7589 0.8500 

Special Use 0.7848 0.6327 

Table 1. Precision and recall after evaluation on our test set (a 
value of 1.0 equals 100%). 

 
Transfer to unknown data representation type: For 
comparison purposes we additionally applied our trained net to 
data we used in a previous test, where humans should classify 
input images into respective building categories (Tutzauer et al., 
2016). This database additionally provided two alternative 
representations for building objects – firstly screenshots of 
textured meshes from Google Earth and secondly screenshots of 
manually modelled untextured LOD3 building models. We 
picked the untextured LOD3 models for input to the CNN, since 
they only have an abstract resemblance with the original training 
data. In total we evaluated almost 80 images and achieve an 
average accuracy of 63.6%. There are two important issues: a) 
the CNN has not seen this representation type at all during 
training phase and b) the LOD3 models additionally contain 
several samples with class-specific geometric properties on 
which the network was not trained. However, this shows the 
transferability of the network to even a completely different 
representation type in the input data. Some examples are depicted 
in Figure 9. 
 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we successfully linked Google Street View imagery 
to a database that contains semantic information for every 
contained building polygon. Such databases are available for a 
number of cities. Hence, it is potentially possible to generate 
large amounts of training data, which is a prerequisite for the 
successful application of Deep Learning frameworks for 
classification. In a first test, it was verified, that this approach can 
be promising, however future work will aim exactly on that very 
topic. In order to do so, some additional work has to be done in 
the processing step. Indoor scenes with limited geo-location 
accuracy have to be detected and eliminated. The incorporation 
of the bounding ܱܨ ௛ܸ/௩ rays might help in cases where the hit of 
߰௜ is not representing the actual central building content. 
Moreover, the FCN used for image analyses could be replaced by 
an object detector framework like Faster R-CNN (Ren et al., 
2015), since we are ultimately only interested in the bounding 
boxes of buildings. However, pre-trained models do not contain 
a building class yet. Therefore, such a network has to be trained 
from scratch. In our investigations, we found that semantic data 

provided by the city administration can be ambiguous or even 
erroneous. This is an issue, which at the same time shows the 
necessity of the proposed approach of automatic building use 
classification. For now, obviously wrong or ambiguous samples 
were discarded in an interactive post-processing step to provide 
a reasonable training input. In the future, we aim on training a 
variety of architectural styles as well as performing the training 
phase in one city and testing in a different one to investigate 
transferability. For that purpose we want to train our own CNN 
architecture from scratch. Since we ultimately want to further 
diversify from the current four classes, it is conceivable to 
leverage the original building-related segmentation classes from 
the FCN (awning, balcony, door, window) as a meta-classifier. 
As an application for our approach, we think of area-wide 
enrichment of crowd-source data like OSM building polygons. 
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