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ABSTRACT:

Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g.
Virtual/Augmented Reality) and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building
use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery
and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant
semantic information automatically from Street View (SV) imagery. Convolutional Neural Networks (CNNs) proved to be extremely
successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic
provision of such training datasets by linking semantic information as already available from databases provided from national mapping
agencies or city administrations to the corresponding fagade images extracted from SV. Finally, we present first investigations with a

CNN and an alternative classifier as a proof of concept.

1. INTRODUCTION

Over the last few years, there has been a shift in photogrammetry
and geoinformation applications from pure geometric
reconstruction of virtual cities to ‘intelligent’ data, models with
semantics. Building Information Modeling (BIM) and Smart
Cities currently are hot topics. These applications feed on a
multitude of data sources. However, this reveals a discrepancy at
the same time - semantic information as required for a multitude
of applications like urban planning and infrastructure
management, includes building use, number of dwelling units
and more (Hecht, 2014). A key information, from which several
other metrics can be derived or at least be approximated, is the
aforementioned building use. Therefore, we see a need for large-
scale automatic building category classification. The following
paper proposes an approach to leverage Google‘s region wide
available Street View data and link the inherent buildings with
data from the digital city base map provided by the City Survey
Office Stuttgart. To extract only building-relevant parts from the
Street View data we pre-process the images. Therefore, we utilize
metadata provided by the Street View API (Google Developers,
2017) and take advantage of a Deep Learning framework for
semantic image segmentation (Long et al., 2015) to analyze our
data for relevant content. Based on the information obtained in
the crawling process we try to link image content with building
polygons in the ground truth. The outcome is a tuple of building
images and its corresponding building category. This data is then
used to train a classifier. With the trained classifier it will be
possible to predict building categories for new input images. First
experiments are focused on investigating the potential of a Bag-
of-Words (BoW) approach and a pre-trained CNN.

For now, we want to distinguish between four different building
use types: residential (purely residential use), commercial
(purely commercial use), hybrid (mixture of commercial and
residential use) and special use (which can be a building use of
anything else, for example: churches, hospitals, museums, but
also construction sites). The remainder of this paper is structured
as follows: in section 2 we give a brief review on urban

classification using semantic segmentation and deep learning,
section 3 describes our approach for the generation of training
data to perform building use classification, section 4 shows some
first results and in section 5 we discuss and draw some
conclusions.

2. RELATED WORK

Within this section, several topics of related work are discussed.
Section 2.1 briefly gives an overview of the subject of Urban
Classification as a whole. In section 2.2 we more specifically
address Semantic Segmentation for Urban Scenes. Finally,
section 2.3 investigates recent related work in the field of Deep
Learning.

2.1 Urban Classification

Urban classification can be hierarchically divided regarding the
type of data acquisition the classification is based on. Satellite
data provides information to perform classification with respect
to different land use, based on hyperspectral analyses. (Hoberg et
al., 2015) present a multitemporal and multiscale classification
based on Conditional Random Fields (CRF). As well as there are
several approaches to perform building outline detection from
satellite imagery (Niemeyer et al., 2014). With aerial data
acquisition, urban classification typically further diversifies — not
only building outlines are extracted (Ortner et al., 2007), but
typically the scenery is divided into vegetation, ground and
buildings. Besides pure 2D image segmentation, state-of-the-art
is to use 3D point cloud information obtained from dense image
matching (Haala and Rothermel, 2015) or LiDAR (Guo et al,,
2011). Data obtained by LiDAR systems can either stem from
airborne laser scanning (ALS) or terrestrial — either static (TLS)
or mobile (MLS). Particularly MLS data is in the focus of urban
classification and will be discussed in the next section.

2.2 Semantic Segmentation for Urban Scenes

When dealing with terrestrial urban data a great number of tasks
is tackled in literature. In (Weinmann et al., 2015) several
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approaches (e.g. Nearest Neighbor, Decision Tree, SVM,
Random Forest, Multilayer Perceptron) are investigated to
classify MLS point clouds into semantic urban classes like
fagade, ground, cars, motorcycles, traffic signs and pedestrians.
They report that Random Forests provide the best trade-off
between accuracy and efficiency. Wang et al. (2015) presented
an approach for holistic scene understanding, which reasons
jointly about 3D object detection, pose estimation, semantic
segmentation and depth reconstruction from a single geo-tagged
image by using a holistic CRF. Similarly, (Xiao and Quan, 2009)
use pairwise Markov Random Fields across multiple views to
perform semantic segmentation for Street View images. We are
aware of the large body of literature concerning building fagade
segmentation and interpretation. However, since we do not aim
on extracting individual facade parts such as windows and doors
in the presented work, but rather want to determine a specific
building use category, we are not covering this topic here. An
extensive overview on urban reconstruction, including facade
interpretation can be found in (Musialski et al., 2013).

2.3 Deep Learning

Recent years have shown rapid development in CNN designs,
performances and applications. Deep Learning is not only
successfully applied in speech recognition (Hinton et al., 2012)
and natural language processing (Collobert and Weston, 2008)
tasks but also state-of-the-art for image classification and
segmentation nowadays (Russakovsky et al., 2015, Everingham
et al., 2012). Recent work proposed an approach to generate full
sentences that describe image content (Karpathy and Fei-Fei,
2015). With regards to urban data, (Weyand et al., 2016)
presented an approach that treats the photo geo-location problem
as classification problem, in contrast to the more popular strategy
of framing it as an image retrieval problem. They subdivide the
earth into thousands of multiscale, geographical cells and train a
deep network (PlaNet) using millions of geotagged images. For
a query image, PlaNet outputs the probability distribution over
the surface of the earth. The same task is addressed by (Hershey
and Wulfe, 2016). They use a GoogLeNet model, pre-trained on
a scene classification data set, to geo-locate images taken from
GSV from 10 different cities. They report human exceeding
accuracy of 75%. The work of (Movshovitz-Attias et al., 2015)
uses SV images for the classification of storefronts, more
specifically the classification into business categories. They
create a large training data set by propagating business category
information with help of an ontology that uses geographical
concepts. For learning, they also use a network based on
GoogLeNet. With a topl accuracy of 69%, they are
approximately at human level.

3. REGISTRATION OF IMAGE DATA WITH
BUILDING USE CATEGORY

This part is structured as follows: in section 3.1 we describe the
crawling process to extract georeferenced fagade images from SV
data. Selection and preprocessing of images to provide suitable
image patches for classifier training is covered in section 3.2.
Finally, in section 3.3 we elaborate on linking image patches to
existing semantic information using coarse georeferencing
information from Street View.

3.1 Urban Image Crawling

A crucial element in performing classification tasks is to obtain
an appropriate number of training samples. Frequently, these are
available from datasets and benchmarks within the fields of

Computer Vision and Machine Learning. The SUN database
(Xiao et al., 2010) consists of almost 4000 object categories but
there are only slightly over 1000 images containing buildings.
ImageNet (Deng et al., 2009) provides over 20,000 indexed
synsets (synonymous word fields) and over 14 million images in
total.

There are also several benchmarks for urban scenes — (Geiger et
al., 2013) developed a mobile mapping platform and host KITTI,
a benchmark with data for a variety of vision tasks from stereo
matching, over scene flow to semantic segmentation. Likewise,
the CITYSCAPES dataset provided by (Cordts et al., 2016)
contains scenes from 50 cities with corresponding semantic
pixelwise annotations for each frame, obtained by a windshield-
mounted stereo camera system. For these datasets, GPS
information of the car’s trajectory is available. However, for our
task these datasets are not suitable since we aim on assigning
specific usage categories to buildings. We take another path and
make use of municipal surveying data in combination with a
publicly available image source. This way we can narrow down
amd merge the variety of building categories, and enforce
correctness of ground truth. There are several reasons why we
pursue the proposed framework at all, when there are already
huge CNN s that classify hundreds of categories with a reasonable
level of correctness, including classes like apartment building or
office building. First, those very deep CNNs developed by
companies are fed with massive amounts of training data — not
everybody can provide or produce those huge collections of
training examples. Moreover, large CNNs have a broad range of
category types they cover, while our work aims on a small subset
of those classes. We are not interested in classifying a plethora of
different categories, but rather very few, with potentially high
intra-class  variance. The evaluation of state-of-the-art
approaches with a multitude of classes is frequently based on the
top5 error, however, since we aim on the determination of a
rather limited number of classes at a rather high reliability, the
top1 error is our main interest.

The actual crawling is implemented in Java Script based on
(Ashwell, 2015) modified for our use. As output from the
crawling process, we obtain a list of positions P;(longitude
A;, latitude ¢;) and headings k;, where i = 1,...,N, with N as
the total number of crawl positions. By dragging the Google
Maps marker one can define the initial crawling position. Using
the Street View API the crawler searches for the next available
panorama based on the current position. Figure 1 shows the
crawling interface with the initial Street View on the left and all
crawled panoramas on the right. We use two different modes of
crawling: panorama-link based and random sampling. The first
method successively visits the link nodes stored in the current
panorama until a predefined total number of panoramas is

le
Location:

Lat: P——— Long.:

StartCrawl | Generate Data File  Clear Markers
Figure 1. Left: Initial crawling position. Right: Markers depicting
each crawled position after process has finished.

fetched. However, this method only returns the center heading
K, of the street view car for this position. Therefore, when using
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panorama-link based method we add 90° to k., — thereby we
obtain frontal views of the buildings. When using the random
sampling technique, we generate random offsets for latitude and
longitude, thereby performing a random walk of the geographical
position. To prevent from excessive divergence we reset to the
initial position in predefined intervals. Based on the randomly
sampled positions we then search for the nearest panorama and
calculate the heading. Outcome of both crawling processes is a
list of 2D geographic coordinates and a corresponding heading
k;. We use this data together with the parameters pitch @ and
field of view (FOV) to query an image I; as part of the panorama
via the Street View API. @ is measured positively looking
upwards with respect to the camera’s initial horizontal position.
We chose @ = 15° and FOVyorizontal = FOVverticar = 90° to
ensure that also larger buildings are covered.

3.2 Extraction of building-relevant images

We aim on the extraction of good training data, which are images
with clear view onto only one single building in center. However,
many of the initial crawled images do not meet those
requirements (see also section 3.2.1 and section 3.2.2).

Figure 2. Input image and corresponding output from the FCN
evaluation. The semantic class building is depicted in blue, sky
in red, road in yellow, plant in green and car in bright blue,
respectively.

Thus, after fetching the Street View data we preprocess all
images I; y to extract only samples with relevant content. One
tool we use to analyze the images is a reimplementation of a Fully
Convolutional Network (FCN) (Long et al., 2015) provided by
(Caesar and Uijlings, 2016). This end-to-end/pixel-to-pixel
trained network uses “raw” images as input and produces a
semantic pixelwise labelling. We use the FCN-16s SIFT Flow
model, which is based on the SIFT Flow dataset with roughly
3000 images and their corresponding pixel labels. In total, there
are 33 semantic categories like awning, balcony, bird, over
mountain, person to tree and window. However, there are not
only semantic, but also geometric labels — the FCN can learn a
joint representation and predict both. We are not interested in all
of those classes. Effectively, we only want to detect whether or
not a building is the actual main content of the current image.
Hence, we merge several classes — for example, we merge
awning, balcony and window to the building class. Similarly, we
merge grass and tree to the plant class.

3.2.1  Occlusions: As stated in the previous section, we have
to ensure, that the main image content is the building of interest.
Thus, as a first step of processing the crawled urban imagery, we
use the described FCN to perform a pixelwise segmentation. By
using the merged classes introduced in the previous section we
obtain results like depicted in Figure 2 on the right. If the main
content of our segmented image consists of plant or car pixels,
we discard this image.

ot

Figure 3. Left: Building Polygo
based on crawling position P; (depicted with a red cross, see also
Figure 6); Right: Corresponding SV image ;.

3.2.2 Blurred Images: Each building owner has the legal
right to demand Google to make his or her private property
unrecognizable within the Street View data. Google approaches
this the same way they anonymize persons — by blurring the
affected buildings. Obviously, we want to discard those images
since there is no actual content provided. There has been a lot of
work on edge-based blur detection (Ong et al., 2003; Narvekar et
al., 2011). In fact, edge detection delivers quite consistent results
in our case, as shown in Figure 4. However, as we incorporate
the aforementioned FCN, we can make use of a particular
property when evaluating images. In that framework, blurred
regions are typically classified as sky or sea pixels and can thus
be detected easily.

‘‘‘‘‘‘‘‘
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Figure 4. From left to right: SV images with ascending level of
blurriness. From top to bottom: SV input data, edge images,
output of the FCN evaluation. The colour coding in the last row
is the same as in Figure 2.

3.3 Linkage of images with correct ground truth

Our ground truth data consists of a 2D shape file with ground
plan polygons for each building, enriched with several aspects of
semantic information like address, communal district, building
block number and, especially of our interest, building use. For
each building polygon BP; we calculate its centroid c;, where j =
1, ..., M, with M as the total number of buildings in the data set.
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Fiure 5. Columns: Our four classes (f.1.t.r): commercial, hybrid,
residential, special use. The first two rows depict samples
considered to be good, whereas the last row shows bad examples.

Once it is ensured, that there is actual building content contained
in [;, we have to link it to the correct corresponding ground truth.
Here, we make use of the previously gathered data from the
crawling process - we know the actual positions P;, for each
obtained SV image. However, these positions are in geographic
coordinates. Ground truth data is located in the GauB3-Kriiger
coordinate  system. Therefore, we perform a datum
transformation between geographic coordinates and the reference
coordinate systems from the national mapping agency.
Subsequently, for each P; we carry out a nearest neighbour (NN)
search in the ground truth dataset based on the centroids ¢; for
each building polygon and extract k candidates BP; j Those
buildings depict our neighbourhood NH;, in which we have to
find the actual building displayed in the image, denoted as I;. To
obtain the correct I[; we have to address several issues, covered
in the following now.

3.3.1 Interiors: In the crawling process, especially the
random sampling approach is not limited to the required street
level imagery but potentially also provides images from interior
panoramas. To eliminate such data, typically covering shops,
public institutions and suchlike, we take P; and perform a point-
in-polygon for each BP; _j in NH;. If the test returns true for one
of the polygons, [; contains indoor scenery and is discarded.
However, too limited geolocation accuracy of these interior
panoramas might lead to an actual position outside the building.
In future work we have to counteract this problem since the
semantic segmentation FCN is trained for outdoor scenes and
hence does not provide useful information in this case. Once
interiors are handled we make use of the heading information x;
to construct a line of sight y; with the corresponding predefined
FOVy . We limit the length of ¥; to 20 meters, to ensure [} is
the central content of I;. In the next step, we determine whether
1; hits any of the polygons NH;.

3.3.2 Multiple Hits and Viewing Angle Dependency: To
verify whether or not there exists a suitable [, we use the line of
sight 1; and perform a test for intersection with BP;_j. If there
are intersections, we call this a hit H¢;_p). However, it is possible
that we obtain multiple hits. The second hit is likely to be the
intersection of the same BP on its rear or side part. For multiple
buildings in close proximity, there can be more than two hits.

If this occurs, we simply sort H;_j by distance to P; and take the
candidate with the shortest Euclidean distance as our correct hit
H,. Multiple hits are more likely if the viewing angle onto I} is

very flat. Not only therefore we want to avoid flat viewing angles
but mainly due to the reason, that we do not consider those
samples as good training input. Ideally, we aim on quasi-frontal
shots of the building fagades. Thus, we proceed as follows. First,
we determine our hit Hg and detect the edge where [} is
intersected. This edge is considered our fagade plane. On the
location H; we construct the fagade normal Ny and determine the
angle a between Ny and 1);, representing our viewing angle
(Figure 6). Ideally, @ would be close to zero. The viewing angle
depicted in Figure 3 is still in order, however if a exceeds a
certain threshold we discard this image candidate. In the future,
we plan on not only considering the central line of sight 1; but
also the bounding rays for our FOV},,, in cases where the hit of
1; might not represent the actual central building content but
rather a different building polygon within the bounds of the
FOVy . Figure S depicts crawled imagery for all four classes.
The first two rows show examples we consider as good, whereas
the last row demonstrates some negative examples.

4. STREET-VIEW BASED IMAGE CLASSIFICATION

At the moment, we limit our classification problem in terms of
the number of classes. Thus, one might argue about the classifier
of choice. From our point of view it is worthwhile not to restrict
ourselves to handcrafted features like HOG, SIFT or SURF but
also investigate in learned features from CNNs. Several works
show, that on small-scale datasets with homogenous distribution,
performance of handcrafted features can be considered on a par
with learned ones. Whereas increased and more heterogeneous

Ly

Figure 6. Viewing angle dependency. The red bounding box
depicts the detected [}. The straight line emerging from I is the
fagade normal, whereas 1; is depicted in green. « is the enclosed
angle between those lines.

=\

datasets lead to superiority of CNNs (Antipov et al., 2015;
Fischer et al., 2014). Since we are crawling Street View images,
we effectively have a vast amount of training data available — our
limiting factor is the availability of correct ground truth for the
building use.

4.1 Bag-of-Words Classification

For comparison, we applied an already existing implementation
of a Bag-of-Words classifier, based on SURF features and a
multiclass linear SVM. The underlying training and test database
is described in section 4.2 in more detail. The original training set
is randomly split in 80% actual training and 20% validation set.
SURF features for each image are extracted and subsequently
clustered using K-Means to create the visual vocabulary. Based
on this vocabulary a multiclass linear SVM is trained on the
training set and evaluated on the validation set. Average accuracy
on the validation set is only 62%, same holds for average
accuracy on the training set, which is at 63%. This classifier is
now applied to a test set with available ground truth (the same as
in section 4.2). The average accuracy here is at 41%. Obviously,
those results are not really useful, thus an alternative approach is
required.

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-1-W1-143-2017 146



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017
ISPRS Hannover Workshop: HRIGI 17 — CMRT 17 — ISA 17 — EuroCOW 17, 6-9 June 2017, Hannover, Germany

4.2 Pre-trained Convolutional Neural Network

The data we use for training and testing the CNN is the same as
in section 4.1, therefore we further elaborate on it here.

Our training set consists of 8000 images (4 classes, each 2000
images) and the validation set contains at least 70 images per
class. However, the original training set is smaller — roughly 2200
images with a distribution of 19% commercial, 22% hybrid, 43%
residential and 16% special use. Thus, we use data augmentation
to provide an equal number of training samples for each class.
Therefore we randomly pick images and randomly perform one
of these three manipulations: 1.) flip image on its vertical axis,
2.) crop and resize to original dimension, 3.) define random 2D
affine transformation (in certain range), warp the image and
resize to original dimension.

For our first proof of concept we use transfer learning on the
imagenet-vgg-f model from (Chatfield et al., 2014). For further
information about the architecture, we would like to refer to the
reference. To adapt this network to our needs we remove the last
two layers (the fully connected fc8 layer and the softmax layer)
and add a custom fc8 layer, which only has an output data depth
of 4 as opposed to the original output depth of 1000. As final
layer we add cross-entropy because we want to determine loss.
Additionally, we add two dropout layers between fc6 and fc7, as
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Figure 7. Top1 error after 96 epochs. Training is depicted in blue,
validation in red.

well as between fc7 and fc8, with a dropout rate of 0.5 each —
since they were probably removed in the testing phase of the
original network. During training phase, we use jittering to
reduce overfitting. Within each training batch we randomly flip
and crop images. On top of that, we apply an alternation of the
RGB channel intensities using PCA, as reported in (Krizhevsky
et al.,, 2014). We use a batch size of 40 images and a fixed
learning rate 7 = 0.0001. After 96 epochs, the top1 training error
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Figure 8. Predictions of the approach described in section 4.2, depicted in the shape of a classification matrix. The main

diagonal entries are correct predictions. Please note how some of the actual ground truth labels themselves are sometimes
ambiguous or the correct class is even for humans hard to identify. Example 1: row 2, column 4 was classified as hybrid
but has the ground truth label special use — actually this is a care facility and we class the entirety of care facilities as special
use. Example 2: row 4, column 3 is clearly a building under construction, though the residential label is obviously correct
— but we trained the network on several construction sites with the label special use, therefore the respective prediction.
(Note: special use class is labelled with unknown in the images here.)
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is at 0.725% and the top!1 validation error is at 21.4% (Figure 7).
We run this on a test set (the same as for the BoW classifier),
which however also contains images from the evaluation set.
Here, we obtain an average accuracy of 75.9%. In Table 1, the
results for precision and recall are depicted. With 85%, the
precision for residential is best, whereas the special use category
is with 63.3% at the lower end. This is most likely due to the high
intra-class variance of the special use category, whereas the
residential class is more homogenous in terms of visual
similarity. In Figure 8, some examples of the classification are
provided. We depict correct and wrong examples in terms of a
confusion matrix. Columns represent ground truth, rows are
predictions from the CNN, correspondingly. Correctly classified
images are therefore displayed on the main diagonal, all
remaining images are wrong classifications.

Recall Precision
Commercial 0.7162 0.7260
Hybrid 0.7680 0.8067
Residential 0.7589 0.8500
Special Use 0.7848 0.6327

Table 1. Precision and recall after evaluation on our test set (a
value of 1.0 equals 100%).

Transfer to unknown data representation type: For
comparison purposes we additionally applied our trained net to
data we used in a previous test, where humans should classify
input images into respective building categories (Tutzauer et al.,
2016). This database additionally provided two alternative
representations for building objects — firstly screenshots of
textured meshes from Google Earth and secondly screenshots of
manually modelled untextured LOD3 building models. We
picked the untextured LOD3 models for input to the CNN, since
they only have an abstract resemblance with the original training
data. In total we evaluated almost 80 images and achieve an
average accuracy of 63.6%. There are two important issues: a)
the CNN has not seen this representation type at all during
training phase and b) the LOD3 models additionally contain
several samples with class-specific geometric properties on
which the network was not trained. However, this shows the
transferability of the network to even a completely different
representation type in the input data. Some examples are depicted
in Figure 9.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we successfully linked Google Street View imagery
to a database that contains semantic information for every
contained building polygon. Such databases are available for a
number of cities. Hence, it is potentially possible to generate
large amounts of training data, which is a prerequisite for the
successful application of Deep Learning frameworks for
classification. In a first test, it was verified, that this approach can
be promising, however future work will aim exactly on that very
topic. In order to do so, some additional work has to be done in
the processing step. Indoor scenes with limited geo-location
accuracy have to be detected and eliminated. The incorporation
of the bounding FOV},,, rays might help in cases where the hit of
p; is not representing the actual central building content.
Moreover, the FCN used for image analyses could be replaced by
an object detector framework like Faster R-CNN (Ren et al,,
2015), since we are ultimately only interested in the bounding
boxes of buildings. However, pre-trained models do not contain
a building class yet. Therefore, such a network has to be trained
from scratch. In our investigations, we found that semantic data
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Figure 9. Results from prediction of pre-trained CNN. The first
row shows some correct predictions, fl.tr: commercial,
residential, special use. The second row depicts wrong
classifications, fl.t.r. denoted in ground truth vs predicted:
residential vs commercial, hybrid vs residential, residential vs
special use (note: special use is labelled with unknown here).

provided by the city administration can be ambiguous or even
erroneous. This is an issue, which at the same time shows the
necessity of the proposed approach of automatic building use
classification. For now, obviously wrong or ambiguous samples
were discarded in an interactive post-processing step to provide
a reasonable training input. In the future, we aim on training a
variety of architectural styles as well as performing the training
phase in one city and testing in a different one to investigate
transferability. For that purpose we want to train our own CNN
architecture from scratch. Since we ultimately want to further
diversify from the current four classes, it is conceivable to
leverage the original building-related segmentation classes from
the FCN (awning, balcony, door, window) as a meta-classifier.
As an application for our approach, we think of area-wide
enrichment of crowd-source data like OSM building polygons.
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