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ABSTRACT: 

Coral reefs, among the world’s most biodiverse and productive submerged habitats, have faced several mass bleaching events due to 
climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause 
corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and 
carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in 
particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong 
discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, 
coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue 
range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of 
the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly 
affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local 
spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image 
acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced 
noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of 
hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral 
smoothing, facilitating the coral detection task. 

* Corresponding author 

1. INTRODUCTION

Coral reefs, recognized as one of the world’s most biodiverse 
and productive submerged habitats (Connel, 1978), faced 6 
mass bleaching events due to climate change and its linked 
impacts during the past 35 years (Hughes, 2003; Hedley, 2016). 
Coral bleaching occurs during prolonged periods of increased 
sea surface temperature (SST) which induce the expulsion of 
the symbiotic microalgae, zooxanthellae, from the coral host 
(Glynn, 1990; Atwood, 1992). This phenomenon can rapidly 
lead to coral mortality and thus substantial decline in 
biodiversity associated with the reef environment (Hoegh-
Guldberg, 2016). Scientists are predicting increasingly serious 
consequences for reef-associated fisheries, tourism, coastal 
protection, and people (Hoegh-Guldberg, 2007). Accurate 
detection, mapping and modelling of the onset, event and 
subsequent results of coral bleaching are vital for the longevity 
of coral reef ecosystems.  

Remote sensing is regarded as the most efficient approach to 
identify coral bleaching events from regional to oceanic basin 
scale (Yamano, 2004). A major complication in such 
approaches is the differentiation between the spectral 
reflectance of bleached coral and that of healthy coral, algae and 
sand that compose a typical reef environment (Holden, 1999; 
Clark, 2000). This highlights the importance of high spectral 
resolution in discriminating the distinct spectral shape of 

bleached coral (Hochberg, 2004). Furthermore, a high spatial 
resolution is necessary to map spatial patterns of bleaching, and 
an optimal Ground Sampling Distance has been suggested in 
the range 40-80 cm (Andréfouët, 2002). Another crucial aspect 
is the temporal resolution of the observations: algae, which 
exhibit similar spectral behavior to zooxanthellae populating 
healthy coral, can rapidly colonize dead corals following 
bleaching, thus hindering the detection of the phenomenon 
(Clark, 2000). Recent development on data acquired by 
airborne and satellite optical sensors have advanced the 
identification and mapping of coral bleaching from a theoretical 
and experimental to a routine level (Hedley, 2016; Holden, 
1999; Elvidge, 2004). 

Hyperspectral instruments measure the reflected solar energy 
from a target in up to hundreds of contiguous and narrow 
spectral bands of the electromagnetic spectrum. The amount of 
energy reflected in each of the wavelength positions differs 
depending on the chemical composition of the target material 
and results in material-specific spectral reflectance signatures, 
which enable the identification of specific materials. In the case 
of corals, these sensors excel at mapping the structure of a coral 
reef and separating healthy from bleached corals. 

For these tasks, mostly airborne data have been used in 
literature, due to the aforementioned need of an adequate GSD, 
which is not possible to obtain from spaceborne sensors. In the 
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specific, derivative features from hyperspectral data convey 
relevant information for the detection of healthy vs. bleached 
coral and the characterization of their context (sand bed) 
(Holden, 2000). 
 
Hyperspectral data also present relevant problematics, hindering 
their use in some practical applications. Firstly, narrow spectral 
bands can be affected by a low Signal-to-Noise Ratio (SNR), 
especially in spectral regions at shorter wavelengths such as the 
blue portion of the spectrum, where Rayleigh scattering 
contributes at decreasing the quality of the images, in addition 
to pronounced atmospheric absorption effects. Furthermore, for 
applications to submerged objects, the water above absorbs 
most of the incident solar radiation, further decreasing the SNR 
and the discrimination capabilities of an acquisition. 
 
It is well known that computing derivative features on noisy 
data sequences can significantly amplify the noise, hindering 
such analysis in hyperspectral image processing. As second 
derivatives are going to be used in this work, multiplying the 
described effects, efficient image denoising algorithm must be 
employed in order to be able to extract reliable and consistent 
derivative features. 
 
Denoising is often carried out in image processing through 
filtering, usually based on convolutions with sliding windows in 
the image domain, on operations in the frequency domain, or on 
estimated noise statistics or degradation functions, if these are 
known for the image acquisition process (Gonzalez, 2007). In 
the case of hyperspectral data, the high spectral dimensionality 
of each image element can be exploited in order to derive a 
pixel-based denoising exploiting both spatial and spectral 
information. Unmixing-based Denoising (UBD) is a supervised 
methodology for the recovery of bands characterized by a low 
SNR in a hyperspectral scene (Cerra, 2014), which is described 
in next section.  
  

2. UNMIXING-BASED DENOISING 

Unmixing-based Denoising (UBD) has been recently proposed 
to selectively retrieve spectral bands characterised by a low 
SNR by exploiting their correlation with non-corrupted pixels 
across the whole spectral dimension in hyperspectral images 
(Cerra et al., 2014). Spectral unmixing is the process which 
aims at decomposing each hyperspectral image element as a 
linear (or less often non-linear) combination of signals typically 
related to pure materials, often called endmembers, representing 
the backscattered solar radiation in each spectral band. 
Considering the physical properties of a mixed spectrum, UBD 
assumes the residual vector derived from the unmixing process 
to be mostly composed of noise and more relevant in spectral 
bands where atmospheric absorption effects are stronger, and 
therefore ignored in the reconstruction.  
 
These methods give as output abundances maps, which quantify 
the contribution of each endmember to a given pixel. Therefore, 
a pixel m could be described as a linear combination of n 
reference spectra },...,,{ 21 nsssS = , weighted by the 

fractional abundances },...,,{ 21 nxxxX = , plus a residual 
vector r, containing the portion of the signal which cannot be 
represented in terms of the basis vectors of choice: 
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For example, if in a scene we have only mixtures of two 
materials in each pixel, for example water and soil, m could be 
expressed as rsxsxm soilsoilwaterwater ++= . The output 
of the described spectral unmixing process is inferred into the 
reconstruction of a given noisy band in a hyperspectral dataset 
through Unmixing-based Denoising (UBD) as follows. 
  
If the modelling errors in S are kept to a minimum, we expect 
the noise term and local anomalies to be predominant in r for 
bands with low SNR and corrupted values, respectively. We 
therefore assume r to be composed by noise, anomalous 
fluctuation, and artifacts introduced during either the 
acquisition or the preprocessing step. If r is ignored we can 
derive a noise-free reconstruction for m which also corrects 
anomalous values as: 
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This means that if the contributions to the radiation reflected 
from a resolution cell are known, the values of noisy bands can 
be derived by a combination of the average values 
characterizing each component in that spectral range. This is 
done under the assumptions that contributions related to 
materials not present in S, subtle variations of one or more 
materials in S, and non-linear mixing effects are negligible. 
 
In spite of adopting a linear unmixing model, which in theory 
does not adapt well to water in which several non-linear 
scattering effects take place, UBD achieved satisfactory results 
when applied to spectral bands in the blue range for scenes 
acquired over coastal waters in previous works (Cerra et al., 
2013).  Therein, UBD showed promising results for the 
estimation of coloured Dissolved Organic Matter (CDOM), and 
for the regularization of bathymetry estimation in coastal 
waters. 
 

3. EXPERIMENTAL RESULTS 

We analyse a hyperspectral scene acquired by the SpecTIR 
sensor over a coral reef in the Red Sea in Saudi Arabia, of size 
960 x 600 pixels, with 128 bands acquired in the range 400-
1000 nm. The image is processed to top-of-the-atmosphere 
radiance values. Several corals are visible in the area: Fig. 1 
reports a true color combination of the Red Sea image in which 
these appear in red. 
 
The UBD algorithm does not need the data to be expressed in 
reflectance, so no conversion from radiance to reflectance has 
been carried out. We apply the algorithm on the scene by pre-
selecting a spectral library of 15 spectra, chosen according to 
their Pixel Purity Index (PPI). The spectra should be chosen in 
order to be as pure as possible: this implies that they should lie 
on the convex hull encompassing the dataset projected in the 
space defined by the spectral bands of the image. The PPI helps 
empirically in selecting pixels as close as possible to the convex 
hull, increasing the chance of reconstructing any pixel inside the 
convex hull with limited distortions as quantified by the 
residual vector r in (1). 
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Figure 1. True color combination (central wavelengths 640, 
551, and 461 nm) from the SpecTIR Red Sea dataset, 

© 2012 SpecTIR 

 
In the following experiments we choose inversion through Non-
negative Least Squares (NNLS) to quantify the abundance 
related to each reference spectrum in the spectral library, 
proportional to the area covered by a given material within an 
image element. It is of interest to remark that NNLS naturally 
enforces sparsity in its solution, as several components in it are 
set to zero: this intuitively well agrees with the characteristics of 
a hyperspectral pixel, which is usually composed by a limited 
number of materials (Cerra, 2014). Unconstrained Least 
Squares and first attempts at using sparse reconstruction tools 
did not yield satisfactory results, while in recent years the fully-
constrained least squares method, which enforces not only non-
negativity but also the sum-to-one constraint on the estimated 
abundances, has been debated by the community and is 
therefore not considered in these experiments (Bioucas Dias, 
2012). 
 
As a first experiment, the first derivative feature is computed for 
noisy bands in the blue range. Fig. 2 reports the original 
derivative and Fig. 3 the result after applying UBD. As the 
method operates pixelwise, fine details in the image are kept, 
along with the overall local spectral information. 
 
As a next step, results are assessed on the second derivative 
feature, which represents a more difficult application. In 
(Holden, 2000), the authors establish a correlation between the 
presence of healthy corals and the second derivative feature 
around 545 nm. Due to the noise present in the image, the 
computation of a second derivative around 545 nm results in a 
very noisy image, in which live corals are very hard to spot 
(Fig. 4). Even after both a spatial and spectral smoothing of the 
image prior to the extraction of derivative features, results are 
hard to interpret (Fig. 5). The pixel-based denoising based on 
UBD delivers a set of derivative features which appear smooth 
and correlated to the actual presence of live corals (Fig. 6). 
Around the live corals, it is easy to identify areas in which the 
first derivative drops considerably, highlighting areas in which 
it assumes higher values. All the derivative features reported 
have undergone the same histogram stretch. In the color 
mapping used, blue corresponds to low values and red to high 
ones. 
 

 
 
Figure 2. First derivative between spectral bands 3 and 4 of the 

Red Sea dataset. 
 

 
 
Figure 3. First derivative between spectral bands 3 and 4 of the 
Red Sea dataset undergone through a denoising step with UBD.  
 
 

 
Figure 4. Second derivative at 545 nm for the Red Sea dataset 

reported in false colors.  

 

4. CONCLUSIONS 

Hyperspectral data are powerful at detecting and characterizing 
coral reefs ecosystems. As derivative features on the spectral 
information are difficult to use in practice, given the low SNR 
of bands in the blue range of the spectrum and the low energy 
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measured by the sensor which is reflected by the submerged 
coral reefs, denoising techniques must be employed in order to 
derive meaningful information from these features.  

Figure 5. Derivative feature as reported in Fig. 4 computed after 
a preprocessing step of spatial and spectral smoothing. 

Figure 6. Second derivative at 545 nm derived after selecting 
UBD as preprocessing step. The live corals can be identified 

and match the ones visible in Fig. 1.  

Unmixing-based Denoising (UBD) is a supervised methodology 
for the recovery of bands characterized by a low Signal-to-
Noise Ratio (SNR) in a hyperspectral scene. UBD reconstructs 
any pixel in a given band as a linear combination of reference 
spectra belonging to materials present in the scene. If a perfect 
unmixing model is given, the residual vector from the unmixing 
process is mostly composed by contributions of uninteresting 
materials, unwanted atmospheric influences and sensor-induced 
noise, and can be thus ignored in the reconstruction process. 
The reported results are promising and suggest that local 
information, both spatial and spectral, could be well preserved 
by selecting UBD as an alternative denoising technique as a 
pre-processing step for coral reef analysis. 

ACKNOWLEDGEMENTS 

The authors thank Benjamin Pröbster for his research on 
datasets suitable for UBD applications. 

REFERENCES 

Andréfouët, S., Berkelmans, R., Odriozola, L., Done, T., 
Oliver, J. and Müller-Karger, F., 2002, "Choosing the 
appropriate spatial resolution for monitoring coral bleaching 
events using remote sensing", Coral Reefs, 21/2, pp. 147-154. 

Atwood, D.K., Hendee, J. C., and Mendez, A., 1992, "An 
Assessment of Global Warming Stress on Caribbean Coral Reef 
Ecosystems", Bulletin of Marine Science, 51/1, pp. 118-130. 

Bioucas Dias, J. M. et al. , 2012, "Hyperspectral Unmixing 
Overview: Geometrical, Statistical, and Sparse Regression-
Based Approaches", IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 5/2, pp. 354-
379. 

Cerra, D., Müller, R., and Reinartz, P., 2014, "Noise Reduction 
in Hyperspectral Images Through Spectral Unmixing," IEEE 
Geoscience and Remote Sensing Letters, 11/1, pp. 109-113. 

Cerra, D., Gege, P., Müller, R., and Reinartz, P., 2013, 
"Exploiting noisy hyperspectral bands for water analysis", 33th 
EarSEL Symposium Proceedings, pp. 43-48. 

Clark, C.D.,  Mumby, P.J., Chisholm, J.R.M., Jaubert, J., and 
Andrefouet, S., 2000, "Spectral discrimination of coral 
mortality states following a severe bleaching event", 
International Journal of Remote Sensing, 21/11, pp. 2321-
2327. 

Connell, J.H., 1978, "Diversity in Tropical Rain Forests and 
Coral Reefs", Science, 199/4335, pp. 1302-1310. 

Elvidge, C.D. et al., 2004, "Satellite observation of Keppel 
Islands (Great Barrier Reef) 2002 coral bleaching using 
IKONOS data", Coral Reefs, 23/1, pp. 123-132. 

Glynn, P. W. and D'Croz, L., 1990, "Experimental evidence for 
high temperature stress as the cause of El Niño-coincident coral 
mortality", Coral Reefs, 8/181, pp. 181-191.# 

Gonzalez, R. C. and Woods, R. E., 2007, "Digital Image 
Processing (3rd Edition)", Prentice Hall. 

Hedley, J. et al., 2016, “Remote Sensing of Coral Reefs for 
Monitoring and Management: A Review,” Remote Sensing, 8/2, 
p. 118.

Hochberg, E.J., Atkinson, M.J., Andréfouët, S., 2004, "Spectral 
reflectance of coral reef bottom-types worldwide and 
implications for coral reef remote sensing", Remote Sensing of 
Environment, vol. 90, no. 1, pp. 86-103. 

Hoegh-Guldberg, B.Y. et al., 2007, "Coral Reefs Under Rapid 
Climate Change and Ocean Acidification", Science, 318/5857, 
pp. 1737-1742. 

Holden, H. and Ledrew, E., 1999, "Hyperspectral Identification 
of Coral Reef Features", International Journal of Remote 
Sensing, 20/13, pp. 2545-2563. 

Holden, H. and Ledrew, E., 2000, "Accuracy Assessment of 
Hyperspectral Classification of Coral Reef Features", Geocarto 
International, 15/2, pp. 5-11. 

Hughes, T. P. et al., 2003, "Climate Change, Human Impacts, 
and the Resilience of Coral Reefs", Science, 310, pp. 929-933. 

Yamano, H. and Tamura, M., 2004, "Detection limits of coral 
reef bleaching by satellite remote sensing: Simulation and data 
analysis", Remote Sensing of Environment, 90/1, pp. 86-103. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017 
 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed.   
doi:10.5194/isprs-archives-XLII-1-W1-279-2017 282


	1. Introduction
	2. Unmixing-based denoising
	3. experimental results
	4. Conclusions
	Acknowledgements
	References



