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ABSTRACT: 

The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The 

demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the 

use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. 

These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, 

speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate “terrain 

points” from “no terrain points”, quickly and consistently, remain a challenge that has caught the interest of researchers. This work 

presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step 

of the process allows reducing the cloud point to a set of points that represent the terrain’s shape, being the distance between points 

inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the 

first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas. 

1. INTRODUCTION

LiDAR is a non-selective technique, i.e., the georeferenced point 

clouds represent the surrounding physical reality at an acquisition 

moment, indiscriminately, with no classification and including: 

terrain, vegetation, buildings, or any other object within the 

system range. So, for using that kind of data for DTM generation, 

it is necessary to identify and to classify the points from the cloud 

that represent the shape of the terrain. 

This subject has challenged many researchers since the first 

LiDAR systems appeared. Many techniques and approaches, 

being more or less effective, were developed in the recent years. 

Chen et al. (2017) provide a good review of the state of the art 

methods for the generation of MDT techniques using point 

clouds generated by Aerial LiDAR Systems (ALS). Despite the 

extensive review and great progress that has been made, it is 

recognized by these authors that the generation of DTM remains 

a challenge, in certain situations.  

The majority of the published work (for e.g., Özcan and Ünsalan, 

2017) in this field of study is based in point clouds from collected 

from ALS. One reason for that may be the fact that MLS 

technology is more recent. However, the point clouds collected 

by MLS present very different characteristics from those 

collected by ALS. The different collection angle, the high density 

of information and the complexity of the environment 

surrounding the road, cause that most of the techniques for DTM 

creation from ALS data do not work or are not very efficient in 

data collected by MLS. 

Nevertheless, there are some studies that adapt filters initially 

designed for ALS, or apply specific algorithms for MLS 

(Fellendorf, 2013; Pfeifer and Mandlburger, 2008; Tyagur and 

Hollaus, 2016; Vallet and Papelard, 2015; Yen et al., 2010).  

This work intends to contribute in this research topic, by 

proposing a novel method based on two main steps that comprise 

an iterative grid division and the establishment of neighborhoods 

by using an adapted version of the Laplacian operator.  

Obtaining the DTM from the road and surrounding area, with 

sufficient detail and precision, is a need for design projects to 

establish water and sanitation networks, asphalt laying and road 

improvement. This need is even more significant in developing 

countries. However, the collection of the data to generate the 

DTM is more difficult in those areas, either due to the lack of 

skilled workforce, security issues, or due to the fact that these 

projects are located in remote areas where production costs are 

not compatible with the available resources. The MLS allow fast 

collection of large amounts of data along the roads, reducing the 

fieldwork time, when compared with classic topographic 

methods, which has implications on lowering acquisition costs 

and increasing safety.  

The implementation of the proposed method arose from the need 

for an efficient method to generate the DTM from MLS point 

clouds, allowing to take advantage from the MLS efficiency. The 

goal is to maintain the precision of the data gathered and at the 

same time not to be a bottleneck in the information process 

workflow.  

A challenge for the DTM generation methods is the adaptation 

capacity to various environments (rural and urban), where the 

features and terrain shapes that surround the roads are very 

different. It is also noteworthy the amount of points in the final 

DTM, since the large number of points in the cloud and in the 

DTM generated from them are usually pointed out by users as a 

limitation to wider use. The points included in the DTM must be 

the minimum as possible but, at the same time, must be enough 

to ensure the representation of the terrain shape at a certain scale. 

The remaining of the paper is composed as follows. In section 2 

the description of the two steps of the method is carried out, as 

well as the description of the method’s parameters. A sensitivity 

analysis of the method’s parameters, and the results obtained in 

different environments and in the most sensitive terrain shapes 

for DTM generation are presented in section 3. It also includes a 

summarized application of the proposed method in two point 

clouds collected in Angola and Brazil. Finally, conclusions and 

future work are provided in section 4. 
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2. METHOD DESCRIPTION 

The proposed method consists of two main, iterative and 

complementary steps. 

Step 1: The purpose of the first step is to decrease the number of 

the cloud points used in the DTM, to accelerate the subsequent 

processes, while keeping a point distribution so to have a good 

representation of the terrain shape. 

The grey points in Figure 1 portray a point cloud collected by an 

MLS, where each point is represented by its tridimensional 

coordinates (X, Y, Z). Initially, a regular grid is established along 

the entire area covered by the point cloud. Inside each grid cell 

the point from the cloud (PZmin) that has the smallest Z 

coordinate value (red points in Figure 1) is identified. Then each 

of these initial cells is divided into four new equal size cells. To 

choose the point that represent each of the new cells, an elevation 

restriction is applied. That restriction is based in the Z value of 

the PZmin point of the cell, which gave rise to it. An interval is 

established that is limited by a minimum Z value (LMin) and a 

maximum Z value (LMax). So, for each new cell, the candidates 

cloud points (PC) are selected based in the condition PZmin(Z) + 

LMin < PC(Z) < PZmin(Z) + LMax. Among the candidate’s 

points that meet this restriction, the point with the lowest Z value 

is chosen (blue points in Figure 1). This process is repeated 

iteratively until a stopping criteria is reached. The stopping 

criteria can be established by the number of iterations or until a 

minimum cell dimension is reached. It is possible to establish a 

relationship between the number of the iterations and the size of 

the cell in this iteration through Equation 1. 

 

  D(𝑖) =
𝐷𝐼𝑛𝑖

(𝑖−1)2
   (1) 

 

Where  i = the iteration number  

 DIni = the initial cell dimension value 

 D(i) = the side cell size in iteration i 

 

 
Figure 1. Schematic iterative division of the cells 

 

On one hand, by choosing in each iteration a point inside the 

resulting cells that is greater than PZmin(Z) + LMin, it allows to 

guarantee an evolution of the represented terrain in the Z 

direction. On the other hand, by setting a maximum limit of 

PZmin(Z) + LMax it ensures that fewer points of cars, trees, 

houses or other points outside the terrain are considered in the 

process. The restriction to the points inside the cells at each 

iteration can be represented by Equation 2. 

 

𝑃𝑐𝑒𝑙 = Min(Z)𝑃𝑐  
𝑤ℎ𝑒𝑟𝑒
→      {

𝑃𝑖(𝑍) + 𝐿𝑀𝑖𝑛 < 𝑃𝑐
𝑃𝑖(𝑍) + 𝐿𝑀𝑎𝑥 > 𝑃𝑐

  (2) 

 

where  Pcel = chosen point in cell  

 Pi (Z) = Z value of the chosen point in previous iteration 

 Min (Z) PC = lowest Z point from the candidates points 

 PC = candidate point from the cloud 

 LMin, LMax = minimum and maximum defined 

thresholds  

The LMin value is directly related to the detail intended for the 

final DTM. By using smaller LMin values it produces smaller Z 

variation between the points in each iteration, so smaller 

variations of the terrain are represented and consequently the 

resulting DTM will have more detail. However, low values for 

LMin lead to a DTM solution with many more points. The value 

shall be established taking into account the desired scale for the 

final DTM. 

To better exemplify the process, let us consider an initial cell in 

which all cloud points (PC) in its interior represent an 

approximately horizontal road. If PZmin is the point with the 

smallest Z value inside the cell and if none of the points inside 

the cell satisfies the condition PZmin(Z) + LMin < PC(Z), then 

no point is associated to the new four cells resulting from the 

initial cell division. In this case the process stops inside the cell 

and the DTM is represented by only one point in the inner space 

of the cell.  

The LMax value is established to limit situations where the 

minimum value within a given cell has a very large difference 

with respect to the cell point that gave rise to it. For example, if 

we consider a cell containing points representing a road and 

branches of a tree over the road, in a first iteration the lowest 

point inside the cell will have the Z value of the road (PZmin), in 

the following iteration, the Z value of all the points representing 

the road will not satisfy the condition PZmin(Z) + LMin < PC(Z). 

The only points that satisfy this condition are the ones that 

represent the tree branches. Considering that the defined LMax 

value is less than the height of the branches in relation to the road, 

all points of the tree branches do not satisfy the condition PZmin 

(Z) + LMax > PC(Z) and will not be considered for the DTM. 

A great advantage of this process is that the resulting points are 

not equidistant, being the distance between them inversely 

proportional to the terrain variation. 

The Figure 2a) represents a point cloud colorized by height, and 

the schematic representation of the result of Step 1 over the area. 

 
Figure 2. a) Perspective view of a colored point cloud and cells 

with the corresponding points inside; b) Top view of the cells and 

selected points. 
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The top view of the resulting points is shown in Figure 2b), where 

the irregular point distance inversely proportional to terrain 

variation can be observed along the terrain break. The different 

point colors represent different iterations. 

Given the large number of points in the cloud, the difficulty in 

handling them is often a constraint to the use of the cloud and the 

resulting DTM. The discretization of the points from the cloud 

through this method allows to decrease the number of points of 

the DTM, maintaining, however, those that realistically represent 

the terrain shape. This process makes an easy handling of the 

DTM through applications and processors with lower 

requirements, allowing the use of them by users less familiar with 

point clouds. Obviously, the terrain within each cell is not 

necessarily quasi-perpendicular to the Z coordinate axis. In 

sloping areas, the number of points for the terrain representation 

will be much higher than the necessary, even if the terrain within 

a given cell is approximately flat.  

At the end of this step, the number of points inside a cell will be 

at most equal to the number of cells resulting from the initial cell 

division, which will be much lower than the number of points in 

the initial cloud. The remaining redundant points will be 

eliminated in the second step of the method.   

A prerequisite to obtain the right result of step 1 is the need that 

the point with the minimum Z of each of the initial cells be in the 

ground, because the whole process is triggered within each cell 

based on this assumption. If that starting point of a given cell is 

above the ground, (over an object outside the terrain, such as a 

car, a house or a tree) all points resulting from the process inside 

that cell will not represent the terrain. On the other hand, although 

in theory no cloud point is below the ground, points in this 

situation are quite common. These points usually result from 

reflections of the LASER pulse on mirrored surfaces, such as 

windows or water, which leads to the deviation of its path, a delay 

in the travel time, and consequently to an error in the point 

position. Both situations are critical for the quality of the final 

result. Figure 3 portrays the effect of a low outlier in the final 

DTM. On one hand, if the point cloud only includes points on 

and above the ground, the increase of the initial cell size also 

increases the chances of the PZMin to be located on the ground. 

Small initial cells are more likely to only include points above 

the ground (for example, a part of a car or a house).  On the other 

hand, as shown in the results, the DTM resolution will be lower, 

when the initial cell size is larger. Likewise, the removal of 

outliers below the ground is a complex task. 

 

 
Figure 3. Erosion process caused by low outlier 

 

For MLS collected point clouds it is possible to use the 

information associated to the trajectory in order to restrict the 

number of candidate points and also to reduce the probability of 

the points to be located far away from the terrain. Considering 

that the MLS trajectory can be represented by a sequence of 

points over time (Ti), there is a temporal relation between each 

one of the cloud points and the moment of the trajectory in which 

this point was obtained.  

When reducing the time interval (T) between two trajectory 

consecutive points to the frequency of the used Inertial 

Measurement Unit, the cloud points obtained in the interval T 

create a cross section, so the cloud can be reduced to a set of these 

cross sections. Since the vehicle carrying the MLS travels along 

the road, and consequently on the ground, it is possible to use the 

trajectory to establish a vertical range limited by values Ld and 

Lu, where the points outside that range are away from the ground 

(down and up, respectively) and will not be considered in the 

process. Thus, it is sufficient to apply a quadratic function 

(Equation 3) to each cross section that allows the generalized 

adaptation to different types of terrain.  

In Figure 4 several terrain situations are presented. Adapting the 

parameters to the terrain shape will help to get better results from 

step 1, especially in urban areas where more reflective surfaces 

exist. In case that several terrain changes occur and it is not 

possible to define a trend, the range (Ld, Lu) can be increased in 

a way to include all terrain points but still eliminating the outliers. 

   

{
𝑃(𝑍)𝑖 − 𝐿𝑑 < 𝑎(𝐷𝑇𝑖)2 + 𝑏(𝐷𝑇𝑖) + (𝑇𝑖 − 𝐴)

𝑃(𝑍)𝑖 + 𝐿𝑢 > 𝑎(𝐷𝑇𝑖)2 + 𝑏(𝐷𝑇𝑖) + (𝑇𝑖 − 𝐴)
  (3) 

 

where  P(Z)i = Z value of candidate point from the cloud  

Ti = trajectory point in the collect moment 

DTi = distance between the cloud point and the                               

trajectory point in the collect moment 

 a, b = quadratic and linear coefficient 

 A = system height to the ground 

                Ld, Lu= down and up range limit 

             

 
Figure 4. a) Linear restriction with a=0 and b=0 b) Quadratic 

restriction with a>0 c) Quadratic restriction with a<0 

 

It is important to emphasize that the previous application of this 

restriction only intends to eliminate outliers significantly away 

from the ground, to which the process is very sensitive.  The 

points that are closer to the ground will be eliminated in the 

smoothing process applied in Step 2 of the method.  
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Step 2: In this step, a Delaunay triangulation is performed, using 

the points resulting from step 1. The triangulation process 

becomes much faster due to the discretization of the cloud points 

made in step 1. In addition, those points ensure the creation of a 

surface much closer to the reality of the terrain, eliminating 

incongruent situations, namely when two or more points have the 

same planimetric (X, Y) coordinates, but different values of Z. 

The Laplacian operator is perhaps the most known and used 

smoothing operator (Belkin et al., 2008). This operator is based 

in the establishment of a neighborhood relation through the 

triangles with shared edges. Figure 5 presents an example of the 

establishment of a neighborhood, where the red points represent 

the neighborhood of the blue point. 

 

 
Figure 5. Neighborhood relation through the shared edges. 

 

The original version of the Laplacian algorithm is quite simple: 

the position of the blue point (and the corresponding triangle 

vertex) is replaced by the average point of the neighbor’s 

positions (red points) (Vollmer et al., 1999).  

In this work, instead of changing the point position, the point is 

removed from the final DTM. Different operators are suggested 

based on the defined neighborhood. For example, the TriMin and 

TriMax values (Figure 5) represent the corresponding minimum 

and maximum lengths of the edges established for the 

neighborhood. 

Another operator to be used in this work is based on the plane or 

planes generated by the neighboring points (Figure 6). 

 
Figure 6. Example of the minimum distance (D) from a point to 

the plane defined by three neighboring points. 

 

In Figure 6, the distance D represents the minimum distance 

between the blue point and a plane generated by the tree 

neighboring points (red points). In order to calculate D it is 

necessary to determine the plane equation from the three-

dimensional coordinates of the points. 

Considering the general equation of a plane as ax + by + cz + d = 

0, the a, b, c and d coefficients can be obtained from a vector 

normal to the plane. The normal vector is computed from the 

cross-product of two vectors connecting the points. Then, the 

distance D is calculated through Equation 4, where (X0, Y0, Z0) 

are the blue point coordinates. 

 

𝐷 =
𝑎𝑥0 + 𝑎𝑦0+𝑎𝑧0 + 𝑑

√𝑎2 + 𝑏2 + 𝑐2
                            (4) 

 

In the case where a point has more than three neighbors, it is 

likely that not all stand on the same plane. In this case, statistical 

methods can be applied to obtain the mean plane, namely by least 

squares or by defining all the planes that are generated by 

grouping the neighbors three by three and calculating all the 

minimum distances between the generated planes and the point. 

In Figure 7, the values PMax and PMin represent the 

corresponding minimum distances to the furthest and the closest 

planes generated by the three grouped neighbors. 

 

 
Figure 7. Minimum and maximum plan distance. 

 

The goal of using these operators is to eliminate all conspicuous 

points by smoothing the surface generated by the points resulting 

from step 1, and to eliminate the points in quasi-plane areas, 

which are not relevant for the representation of the terrain. The 

step 2 is applied through an iterative process. Two values of 

distance, D1 and D2 are established. In each iteration a new 

Delaunay triangulation is created, and the points where D1 > 

PMax or D2 < PMin are eliminated. D1 and D2 may be adjusted 

according to the desired result. Taking into account that 

neighborhood is reciprocal i.e., a certain point belongs to the 

neighborhood of each of the neighboring points, in order to avoid 

an erosion of the model, a constraint is applied in each iteration. 

Based on that constraint, if any neighbor of a point is identified 

to be eliminated from the model, that point cannot be eliminated 

in that iteration, regardless of satisfying the condition ‘D1 > 

PMax or D2 < PMin’. The stopping criteria for the iterations can 

be established by an absolute minimum value for the number of 

eliminated points or by setting a minimum value for the 

eliminated points between consecutive iterations. 

It should be noted that the resulting points from Step 1 and Step 

2 are points directly measured from the clouds, with no 

interpolation process. 

 

 

3. RESULTS 

In order to test the different steps of the proposed method, C# 

algorithms were implemented. This section depicts the obtained 

results by the application of the two steps in point clouds 

collected by MLS. A sensitivity analysis of the proposed method 
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parameters is presented. The following examples data were also 

chosen to demonstrate the application of the method in rural and 

urban environments. 

 

3.1 Sensitivity analysis 

Figure 8a) shows a point cloud sample in a rural area with trees. 

Figure 8b) presents the result obtained by applying Step 1 to the 

sample cloud of Figure 8a). It can be verified that the cloud points 

representing the vegetation, the house wall, electric power lines 

and poles were globally eliminated, keeping only points at the 

terrain level. It is also observed that the resulting points do not 

have a regular density, being the density smaller in plane areas, 

for example along the road, and higher in areas with greater 

terrain variation. 

 

 
Figure 8. a) Point cloud example colored by height b) Resulting 

points obtained from Step 1 application after four iterations, 

where DIni = 1 m, LMin = 0.04 m, LMax = 0.08 m. 

 

The results obtained by the variation of the initial cell dimension 

(DIni) are presented (Figure 9). The remaining parameters values 

are the same as used in Figure 8b). By decreasing the DIni value, 

the resulting points’ density increases, allowing a better 

representation of the terrain details. 

 

 
Figure 9. a) Point cloud in urban area colored by height b) Step 1 

result with DIni = 4 m c) Step 1 result with DIni = 2 m d) Step 1 

result with DIni = 1 m. 

 

One of the great challenges in DTM creation and representation 

is the modelling of the terrain break lines, being the line along 

the curb in urban areas a good example of this. In Figure 10, a 

cross section of a point cloud crossing a curb is presented. The 

cross section has a width of 0.25 m and a length of 2 m.  It is also 

presented with red points the obtained result as the number of 

iterations of Step 1 increases. In the first iteration (Figure 10a)) it 

is only observed the points with the lowest Z value (PZMin) 

inside the initial cells. As the number of iterations increases 

(Figures 10b) and 10c)), the division of each of the initial cells 

allows a greater discretization of the terrain and consequently 

increases the number of points. 

 

 
Figure 10. a) Step 1 result with one iteration b) Step 1 result with 

two iterations c) Step 1 result with three iterations. 

 

By increasing the number of iterations, a greater concentration of 

points takes place in the break line area of the curb, while in the 

horizontal areas the density does not increase. This effect results 

from the fact that in the following iterations, in the quasi 

horizontal areas, none of the points inside the cells satisfy the 

constraint of Equation 2, and the process is stopped inside these 

cells. In the areas of greater terrain variation the cells continue to 

divide until there are no more points that satisfy the condition or 

until the stop criteria is reached. This explains the fact that the 

distance between the resulting points is inversely proportional to 

the variation of the terrain. 

Parked cars along roads are another typical issue in DTM creation 

from point clouds collected in urban environments. Figure 11a) 

shows a point cloud where two parked cars were captured by the 

MLS data collection. Figures 11b) and 11c) compare the obtained 

results of step 1 by variation of LMax value. By decreasing the 

LMax value (Figure 11c)), the number of points representing the 

vehicles in the final result also decrease. That happens because 

the LMax value used in the example shown in Figure 11c) is less 
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than the distance between the car floor and the ground. Thus, the 

step1 applied to the cells containing the points from the car stops 

before reaching those points. The only points representing the car 

that remain in the Figure 11c) are the points from the car wheels 

that are in contact with the ground. In Figure 11b), the points 

representing the car floor that are collected directly or through 

the car window remain in the result. The result presented in 

Figure 11c) turns much easier the elimination of the car points in 

step 2. In the Figure 11b) result, it will be more difficult to 

eliminate those car points and at the same time keeping, for 

example, the points representing the curb.  

 

 
Figure 11. a) Point cloud sample, colored by elevation b) Step 1 

result with LMax = 0.40 m c) Step 1 result with LMax = 0.15 m. 

 

In the application of Step 2, the S-hull algorithm (Sinclair, 2010) 

was selected to implement the Delaunay triangulation, among the 

various algorithms described in the literature.  

Figure 12a) shows a hill shade representation of the Delaunay 

triangulation based in the points of Figure 8b).  

Although the surface appears to make a correct representation of 

the terrain, if an amplified zone is observed (Figure 12b)), it can 

be verified that there are many peaks particularly in the 

undergrowth areas. This effect will be decreased by the 

application of step 2. 

Threshold values of PMax and PMin are defined. The goal is, on 

one hand, the elimination of conspicuous points and smoothing 

the surface and, on the other hand, the decrease of the number of 

the DTM points, keeping the terrain details, namely, the break 

lines along the terrain. 

 
Figure 12. a) Hill shade representation of the Delaunay 

triangulation of Figure 8a) result b) Amplified red area of Figure 

12a). 

 

Figure 13 represents the same amplified area of Figure 12b), after 

the application of step 2. The result was obtained with the 

restrictions PMax > 0.05 m and Trimax < 0.75 m. That means 

that in each iteration all points that satisfy both conditions are 

eliminated. Besides that, in each iteration, no point can be 

eliminated if any of its neighbors are identified to be eliminated. 

The number of points have been reduced from approximately 

122000 in Step 1 result (Figure 8b)) to 53000 points (a reduction 

of 57%). The presented result was obtained after 37 iterations and 

took 42 seconds. 

 

 
 

Figure 13. Result obtained after Step 2 application with PMax > 

0.05 m and Trimax < 0.75 m. 

 

Together with the smoothing process, the PMin value was used 

to decrease the number of points in flat areas. Figure 14 shows 

the difference between the Delaunay triangulation of the Step 1 

result (Figure 14 a)) and the Step 2 result using PMin < 0.005 m 
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and TriMin < 0.5 m (Figure 14 b)). Despite the fact that a lower 

point density can be observed in flat areas, the curb line is still 

well defined. 

 

 
Figure 14. a) Delaunay triangulation of Step1 result b) Delaunay 

triangulation of Step1 result and PMin < 0.005 m and TriMin < 

0.5 m. 

 

Using the parameters of Figure 13 and Figure 14b) on step 2, it 

was possible to decrease the number of points to approximately 

8000. Starting from the point cloud shown in Figure 8a), with 

1238000 points, it took around 70 seconds in total to run both 

steps 1 and 2. The resulting data set has a decrease of 99% of the 

initial points that are comprised of non-ground and redundant 

points. The remaining data set includes points that are part of the 

terrain and are enough to create a realistic DTM. 

 

3.2 Case studies of Angola and Brazil 

The proposed method was applied in two MLS data collections 

along roads in different areas of the globe, Brazil and Angola. 

Both are developing countries with huge infrastructures needs 

and the corresponding need of basic geographic information to 

support their project design, namely DTM. In the Angola study 

case, it is intended to obtain a DTM from a rural road in Luanda 

surroundings. The purpose of the DTM is to be used as a basis to 

the project design of a road asphalting. The data from Brazil was 

collected in an urban neighborhood of Rio de Janeiro, and its 

purpose is the project design of a sanitation network. 

The collected point clouds were obtained by different systems 

and processed by different software applications. In both cases 

the clouds were exported to LAS 1.2 file format (Specifications 

in Table 1).  

 

Country MLS  LAS number Lenght 

Angola Trimble MX8  8 12 Km 

Brazil Optech Lynx 19 23 Km 

Table 1. Main data collection specifications 

The LAS number in Table 1 corresponds to the number of the 

standard LAS files obtained in each data collection. The files can 

be split by the operator in the vehicle at the collection moment or 

in the cloud processing software.  

First, the step 1 and step 2 were applied in sequence to each LAS 

file independently. For each LAS file an ASCII file was created 

with the resulting points. That allows to reduce the number of 

points in a way to subsequently merge the ASCII files. Step 2 is 

again applied to the merged ASCII file to get the DTM points for 

the entire collected area. 

 

 
Figure 15. Overall view of the Brazil DTM final result. 

 

The final DTM comprise approximately 248000 points in Brazil 

(Figure 15) and 65000 in Angola. 

Figure 16 shows a sample area of the Angola final result. The 

DTM is represented by contours with 0.5 m distance and 

elevation points. The presented elevation points were chosen 

directly from the resulting DTM points with no interpolation. 

 

 
 

Figure 16. Angola data set area. 

 

Table 2 describes the processing time for each task of the process. 
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Country 
Data 

collection 

Cloud 

Processing 

DTM 

Processing 

Angola 2 hours 6 hours 5 hours 

Brazil 6 hours 13 hours 11 hours 

Table 2. Tasks processing time. 

The planning time, travel, GPS reference establishment, control 

points measure and data transfer are not included in Table 2, but 

even so it can be used to compare the different tasks processing 

time and to show that the proposed method can be applied 

without having the processing time as a bottleneck of the entire 

process. 

4. CONCLUSIONS AND FUTURE WORK

This work proposes a novel method to create DTM from MLS 

collected point clouds. Besides the process description, a 

sensitivity analysis is presented to demonstrate the adaptation 

capacity of the model to different environments. The method 

behavior in the most typical issues in DTM creation, like break 

lines, is also presented. 

The resulting DTM points are not equidistant, which allows the 

creation of a more detailed model with less points. The remaining 

points belong to the initial points cloud, with no interpolation.  

Since the method is very sensitive to outliers, a procedure to 

eliminate the points most apart from the terrain is depicted. 

There are still some ongoing work, especially to create the DTM 

in heterogeneous areas included in the same point cloud. Perhaps 

a pre-process can be included in the method to determine the best 

parameters to different terrain environments, which is 

recommended as future work. 

Despite that, the simplicity of the method and the results obtained 

by its application in data collected from different systems and in 

different countries, are encouraging and they justify the pursuing 

for methods improvement. 
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