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ABSTRACT: 

Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in 

this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, 

“pepper and salt” appears and classification results will be effected when the pixelwise classification algorithms are applied to high-

resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high 

resolution images with limited labelled samples, spectral drift and “pepper and salt” problem, an object-based manifold alignment 

method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) 

respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment 

method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in 

the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both 

considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are 

used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than 

traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of “pepper and salt”. 

* Corresponding author

1. INTRODUCTION

Multi-temporal remote sensing images, which are acquired by 

sensors mounted on board of satellites that periodically pass 

over the same geographical area, become an important tool for 

performing Earth monitoring. However, two main obstacles 

prevent multi-temporal technology from reaching a broader 

range of applications. On the one hand, there is generally a lack 

of labelled data at each acquisition. On the other hand, multi-

temporal images obtained under different conditions show the 

spectral drift. Such drift generally happens due to differences in 

acquisition and atmospheric conditions or changes in the nature 

of the observed object (Tuia et al, 2016a). The obstacle of label 

scarcity can be solved by using available labelled samples from 

other temporal images. Due to spectral drift, the distributions of 

source image and target image are significantly different. To 

classify un-labelled image using labelled image efficiently and 

accurately, modern processing systems must be designed to be 

robust for solving spectral drift. 

Spectral drift can be solved by shifting data distribution, which 

is a hot issue in machine learning referred to domain adaptation 

(DA) or transfer learning. In the community of multi-temporal 

remote sensing images classification, several approaches have 

been proposed to solve spectral drift. Kernel framework and 

manifold alignment (MA) are two kinds of typical methods. 

Support vector machines (SVM) was extended to the DA 

framework by exploiting labelled source-domain data and 

unlabelled target domain data in the training phase of the 

algorithm (Bruzzone et al, 2009). A new transfer kernel learning 

approach was proposed a to learn a domain-invariant kernel by 

directly matching the source and target distributions in the 

reproducing kernel Hilbert space (Long et al, 2015). Laplacian 

support vector machines (LapSVM) method was proposed for 

solving spectral drift (Kim et al, 2010). The classifier in 

LapSVM is adapted to the new data set via iterative application 

of the classifier using the clustering condition on the data 

manifold. Domain Transfer Multiple Kernel Learning (DTMKL) 

is proposed aiming at simultaneously learning a kernel function 

and a robust classifier by minimizing both the structural risk 

function and the distribution mismatch (Duan et al, 2012). MA 

has also been found to be useful for shifting data distributions 

(Yang et al, 2006; Wang et al, 2009) and overcoming spectral 

drift. Yang et al. proposed two MA techniques that involve 

aligning underlying local manifolds of temporally sequential 

data sets. The proposed methods extend graph-based semi-

supervised learning and explore MA for the multi-temporal 

image classification task, while proposing a DA framework 

from the geometric learning viewpoint. Semi-supervised MA 

(SSMA) method is proposed by useing labelled samples from 

all domains to bring the manifolds closer while keeping their 

respective inherent structure unchanged using proximity graphs 

built with unlabelled samples (Tuia et al, 2014; Yang et al, 

2016). Tuia et al. also study a generalization of SSMA through 

kernelization for MA in a nonlinear way. The Kernel MA 

(KEMA) provides a flexible and discriminative projection map, 

exploits only a few labelled samples in each domain, and turns 

to solve a generalized eigenvalue problem (Tuia et al, 2016a; 

Tuia et al, 2016b). 

With the advent of the new generation of remote sensing 

missions, satellites with short revisit time and high resolution 
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(HR) sensors have come up and increased significantly (Tuia et 

al, 2016c). As a consequence, it becomes possible to perform a 

large variety of monitoring studies since the geographical area 

of interest can be covered periodically (Tuia et al, 2014). And 

analysts have the opportunity to use multi-temporal images for 

tasks such as repetitive monitoring of the territory, change 

detection, and large-scale processing. However, some 

challenges are brought to human as well as the opportunity. 

First, we could often find the “pepper and salt” effect in the 

classification results when the pixelwise classification 

algorithms are applied to high-resolution satellite images, in 

which the spatial relationship among the pixels is ignored. 

Second, high resolution imaging and the insufficient spectral 

bands make the distribution of different classes overlap 

seriously and reduce class separability. 

 

For overcoming “pepper and salt” problem in high resolution 

images classification, superpixel segmentation is often used for 

keeping the consistency of adjacent space in classification. 

Superpixel segmentation is an important pre-processing step of 

many image processing algorithms, like object detection and 

tracking (Rasmussen, 2007), image segmentation and modelling 

(Mi et al, 2009), salience detection (Tong et al, 2014) and 

image and object classification (Liu et al, 2016), etc. A 

superpixel is a set of pixels which are homogeneous in 

perception or spectrum, a representative color or spectrum is 

used to represent each superpixel, and the effect of noise and 

distortions is thus mitigated. What’s more, it can also capture 

image redundancy and greatly reduce the complexity of 

subsequent image processing tasks. 

 

For the overlap problem existed in high spatial resolution image, 

tradition manifold alignment for multi-temporal classification 

method must improve the similarity matrix calculating step 

(include the in-domain and multi-domain). For classifying the 

multi-temporal high resolution images with limited labelled 

samples, spectral drift, an object-based manifold alignment 

method is proposed. Firstly, multi-temporal multispectral 

images are cut to superpixels or supervoxels by simple linear 

iterative clustering respectively to overcome “pepper and salt” 

effect (2 cases of multi-temporal high-resolution remote sensing 

images are considered: One is that all images cover different 

geographic areas, the other is that all the images cover same 

geographic area and are registered). Secondly, features obtained 

from each superpixel are formed as a vector. Thirdly, a majority 

voting manifold alignment is proposed to build improved graph 

Laplacian for mitigating overlapped phenomenon and mapping 

the vector data to alignment space. At last, all the data in the 

alignment space are classified by using KNN method. 

 

The rest parts of this paper are organized as follows. Section 2 

describes the proposed method. Section 3 presents the two 

groups of multi-temporal HR images used in the experiments 

and summarizes experimental results in details. Section 4 draws 

conclusions for this paper. 

 

2. PROPOSED METHOD 

Two cases of multi-temporal high-resolution remote sensing 

images are considered in this paper: One is that all images cover 

different geographic areas, another is that all the images cover 

the same geographic area and are registered. The first case 

mainly considers the spectral drift problem between different 

images and has a wide range of application in multi-temporal, 

multi-source and multi-model data fusion and classification. 

The second case mainly considers the continuity of 

segmentation results of unchanged areas between multi-

temporal images, excepting considering the spectral drift. This 

case has a deeply using in high resolution images change 

detection. For the first case, a new object based multi-temporal 

high resolution classification methodology is proposed and 

consists of four steps: respective multi-temporal images 

segmentation (cut to superpixel, treat as object), object feature 

extraction, object alignment with majority voting manifold 

alignment and object classification with KNN classifier. For the 

second case, an Supervoxel segmentation technology is used for 

keeping the continuity of segmentation results on temporal 

dimension. Fig.1 is the framework of the proposed 

multitemporal high resolution images classification method.  

 

 

 
 

 

 

Fig.1 Framework of the proposed multitemporal high resolution images classification 

Step 1: segmentation 

Step 2: object 

feature extraction Step 3: object 

alignment 

Step 4: object 

classification 

Source image 

Source labels 

Target image 
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2.1 Multi-temporal images segmentation 

Two cases are considered in the segmentation parts: one is the 

all the image are from different areas (all images are segmented 

respectively) and another is that all images are from same area 

(all the images are segmented together into supervoxels). 

 

2.1.1 Multi-temporal images segmentation for different 

areas condition 

 

Simple linear iterative clustering (Achanta, 2012) is an adaption 

of k-means for super pixel generation and it is easy to use and 

be understand. By default, the only parameter to set in the 

algorithm is k, the desired number of approximately equally 

sized superpixels. For color images in CIELAB color space, the 

clustering procedure begins with an initialization step where 

some initial cluster centers are sampled on a regular grid spaced 

pixels apart. The clustering centers are moved to seed locations 

corresponding to the lowest gradient position in a S×3 

neighborhood in order to avoid centering the edge of a 

superpixel, and to reduce the chance of seeding a superpixel 

with a noisy pixel. And then, in the assignment step, each pixel 

is associate with the nearest cluster center whose region 

overlaps its location in a size of S×S and 2S×2S dual window 

shown in Fig. 2. A distance measure D, which determines the 

nearest cluster center for each pixel, is then introduced. D 

computes the distance between each pixel and cluster center. 

The simply defining D will cause inconsistencies in clustering 

behavior for different superpixel sizes. 

 

S

2S

 
Fig.2. SLIC searches a limited region 

 

In order to combine the color distance and spatial distance into 

a unified measure, it is necessary to normalize the color 

proximity and spatial proximity by their maximum distances 

within a cluster NS and NC, respectively. Doing so, D’ is written 

as follows: 
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The maximum spatial distance expected within a given cluster 

should correspond to the sampling interval, 

 /SN S N K  . Determining the maximum color 

distance NC is not so straightforward, as color distances can 

vary significantly from cluster to cluster and image to image. 

This problem can be avoided by fixing NC to a constant m so 

that (1) becomes 
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                             (2) 

 

Once each pixel is connected with the nearest cluster center 

then the clusters centres for the mean [l a b x y] vector can be 

adjusted by an update step with all the pixels which belongs to 

the cluster. A residual error E is computed by the L2 norm 

between the prior cluster center locations and the recent cluster 

center locations. The update and the assignment steps may be 

repeated till the error reduces. 

 

2.1.2 Multi-temporal images segmentation for same area 

condition 

 

In the 2.1.1 part, SLIC can also be extended to handle same area 

condition by including temporal dimension to the spatial 

proximity term of (1) as Eq.3. It’s a supervoxel segmentation 

method. After supervoxel segmentation on the multi-temporal 

data, superpixel will be used in the next steps by separating the 

supervoxel to superpixel on the temporal dimension. 

 

     
2 2 2

s j i j i j id x x y y t t                    (3) 

 

2.2 Object feature extraction and label reorganization 

Because the spectral from same kind of objects are significantly 

different under the high spatial resolution and limited bands 

condition, averaging stage for getting the object features has the 

disadvantage for the object expression. For better express the 

object under the high resolution condition, an improved central 

spectrum used as the object feature in this paper. The central 

spectrum of each object can be calculated by using 

1
arg max

i

k

S i jj
S S


  where Si and Sj are pixels from the 

object and k is pixel number of the object. The label of object 

used in this paper is the label which has the largest number of 

categories in the statistics for all the labels on this object. 

 

2.3 Majority voting manifold alignment for multi-temporal 

images alignment 

Let  
1

m p

i i
x


 X  denote m labeled objects of source 

image and p is the feature bands. The class label of X is denoted 

as  
1

m

i i
C c


 . Let  

1

n p

i i
y


 Y  denote n un-labeled 

objects of target images. The aim of this letter is to learn 

mappings α and β to map X and Y to a joint space J, where the 

manifold structures inside of X, Y and J will be preserved by 

using manifold technology. 

 

2.3.1 Manifold alignment without corresponding 

 

To preserve the manifold structures, some semi-supervised 

alignment [8], [12] directly computes the mapping results by 

minimizing the following cost function: 

 

     

 

22 ,

,

2
,

,

, 0.5

0.5

i j

i i i j Xi i j

i j

i j Yi j

C f g f g f f W

g g W

    

  

 


     (4) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1/W1, 2017 
 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed.   
doi:10.5194/isprs-archives-XLII-1-W1-325-2017

 
327



 

where fi is the mapping result of xi, gi is the mapping result of yi 

and μ is the weight of the first term. 
XW  is the similarity matrix 

between each pixel from X, 
YW  is the similarity matrix between 

each pixel from Y.  The similarity between two pixels is 

calculated as following: 

 
2

, 2
exp

2
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W
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                              (5) 

 

The first term in (4) penalizes the differences between X and Y 

on the mapping results of the corresponding instances. The 

second and third terms in (4) ensure that the neighborhood 

relationship within X and Y will be preserved. Because the 

local geometry has more similarity than global geometry, only 

local neighborhood relationship is used to calculate the 

similarity matrix in most of manifold methods, such as locally 

linear embedding (LLE) [13] and Laplacian eigenmaps (LE). In 

other words, only the most similar pixel or top k similar pixels 

will be used to calculate the similarity matrix. 

 

In multi-temporal HR images, the corresponding pixels are not 

easily to be found, so the first term in (4) should be changed to 

suit the condition without corresponding. To achieve this goal, 

all the data are calculated rather than only the corresponding 

pixels. Locality preserving projection, which has same goal with 

our expectation, can be are used to update the first term. 

Besides, because HR remote sensing images always have huge 

number of pixels, direct embedding methods have to consume a 

large amount of computation time to align all pixels of target 

image. Therefore, we seek for linear mapping functions α and β 

(Xα=f, Yβ=g) rather than direct embedding, so that the mapping 

can be used to project the rest data of target image into joint 

space directly (only a few of pixels of target image are used to 

compute the mapping matrix). After that, the mapped data of the 

rest of target image can be classified easily by using f (the 

mapped data of X) and its corresponding class label L. Based on 

those considerations, the cost function is modified as follows: 
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where 
XYW  is defined as the similarity matrix between each 

pixel of X and each pixel of Y. To align X and Y, we should 

find the solution to minimize the cost function  ,C   . In 

[13], the optimization problem can be written as follow: 
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where  ,
T

T T   , XL  and YL are the Laplacian matrix, 

X X XL D W   and 
Y Y YL D W  . 

XD  and 
YD are diagonal 

matrix, 
, ,i i i j

X Xj
D W  and 

, ,i i i j

Y Yj
D W . 

X  is an m×m 

diagonal matrix and 
, ,i i i j

X XYj
W  ,

Y  is an n×n diagonal 

matrix, and 
, ,i i i j

Y XYi
W  . 

 

By using the Lagrange trick, the solution to the optimization 

problem (7) is a typical generalized eigenvalue problem and can 

be solved as follow: 
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where Z , R  and D  is defined as follow: 

 

X
Z

Y

 
  
 

                                      (9) 

'

X X XY

XY Y Y

L W
R

W L

 

 

   
  

   
                        (10) 

0

0

X

Y

D
D

D

 
  
 

                                   (11) 

 

2.3.2 Majority voting stage in manifold alignment 

 

In manifold alignment methods, the most similar pixel or top k 

similar pixels are used to calculate similar matrix and Laplacian 

matrix for keeping local neighbourhood relationship.  However, 

the most similar pixel or some of the top k similar pixels maybe 

not belong to same category with the current pixel. Fig.3a 

shows this case within source image (class label is known in 

source image). The most similar pixel of pixel2 (similarity is 

0.95) is not belong to same category with the current pixel. One 

pixels of the top four similar pixels is not the same. In 

consequence, local neighbourhood relationship is preserved in 

manifold learning methods but inter-class distances are not 

improved. Fortunately, most of the similar pixels are still belong 

to same category with the current pixel (like in Fig.3a, four 

most similar pixels are used, three connections are current and 

one connection is wrong). In other words, the current pixel is 

more likely to belong to the category which the majority of 

pixels belong (shown in Fig.3b). If only the pixels from same 

category are used in manifold representation (connected pixels 

shown in Fig.3b), it will help us get rid of many false matches. 

And inter-class distances will be improved while keeping local 

geometry. For improving calculation efficiency, one of the 

effective ways is to reduce the connection number. The best 

connection (shown in Fig.3c) is the most similar pixel which 

has same category with current pixel (shown in Fig.3b). 

 

 
(a) Traditional connection in manifold alignment 
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(b) Our connection 

 

 
(c) Best single connection 

 

Fig.3 Majority voting strategy in source image 

 

Fig.4a shows the same case (like Fig.3a) between source image 

and target image (current pixel is from target image and similar 

pixels are from source image). The most similar pixel or top k 

similar pixels maybe still not belong to the same category with 

the current pixel. Although the label of the current pixel is 

unknown, we still can assume that the current pixel is likely to 

belong to the category which the majority of pixels belong to. 

This can be achieved easily because the label of source image is 

known. It can be seen from Fig.4b that category of the 

maximum number of connections and all of its connection. 

Fig.4c is the best connection (maximum similarity in Fig.4b). 

 

In this paper, the similar pixel used in majority voting MA is 

only the best single connection shown in Fig.3c and Fig.4c. 

 

 
(a) Traditional connection in manifold alignment 

 
(b) Our connection 

 

 
(c) Best single connection 

 

Fig 4. Majority voting strategy between source and target 

 

2.4 Multi-temporal images classification 

After all the mapping matrixes have been calculated (mapping 

matrix for objects of source images and mapping matrix for 

objects of target image), all the object from all domain/images 

can be mapping into the new alignment space. With some 

labelled object from source images, the objects from target 

image can be easily classified in alignment space by using KNN 

method. The unlabelled objects of source image can also be 

classified in alignment space with same method. If necessary, 

change detection will be achieved with the classification result 

of multi-temporal images. 

 

3. EXPERIMENTS AND RESULTS 

In this section, the proposed object-based manifold alignment 

for high resolution multi-temporal images classification method 

is tested. First, two groups of multi-temporal GF remote sensing 

scene data sets are introduced. Then, experimental results are 

given for the proposed method and the comparison methods.  

 

3.1 Multi-temporal HR remote sensing images 

The proposed method was implemented on GF1 and GF2 data 

sets. Both GF1 and GF2 satellites are belong to China High-

resolution Earth Observation System (CHEOS). CHREOS 

provides Near-Real-Time observations for disaster prevention 

and relief, climate change monitoring, geographical mapping, 

environment and resource surveying. CHEOS is composited by 

four subsystems: space-based system, near space and airborne 

system, ground system and application system. GF1 and GF2 

are parts of space-based system. GF1 is configured with two 2m 
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panchromatic/8m multispectral camera and four 16 m 

multispectral medium-resolution and wide field camera set. GF2 

has higher spatial resolution than GF1 and is capable of 

collecting satellite imagery of 0.8m panchromatic and 3.2m 

multispectral bands. Both GF1 and GF2 have four multispectral 

bands (blue, green, red and NIR) and have very similar band 

settings.  

 

The GF1 data set used in this paper has two images (1536×1536) 

collected over Harbin city, Heilongjiang province, China on 

September 3, 2013 (set as source image, shown in Fig.5a) and 

September 20, 2014 (set as target image, shown in Fig.5b). The 

GF2 data set also has two images (2560×2560) collected over 

Qingdao city, Shandong province, China on March 2, 2014 (set 

as source image, shown in Fig.5e) and April 15, 2015 (set as 

target image, shown in Fig.5f). The two images of GF1 data set 

has small spectral drift but has big object changing. The two 

images of GF2 data set have few objects changing but has big 

spectral drift.  

 

All images are from 8 typical scene categories, the class names 

and the color settings are shown in Fig.5h. Labelled data of 

each image is shown in Fig.5. All the images of each group are 

collected at same geographical area for utilizing the spatial 

information. All the images of each group must be registrated 

before being used. 

 

  
(a)                                               (b) 

 

  
(c)                                               (d) 

 

  
(e)                                               (f) 

              
(g)                                               (h) 

 

Fig.5 Multi-temporal HR GF data sets. Red–green–blue 

composite images of (a) source image of GF1, (c) target image 

of GF1, (e) source image of GF2, and (f) target image of GF2. 

Labeled data for (b) source image of GF1, (d) target image of 

GF1, and (g) both source image and target image of GF2. Class 

names of GF data sets (h). 

 

3.2 Experiment settings 

To verify the efficiency and superiority of the proposed 

objected-based multi-temporal high resolution classification 

method, three pixelwise methods are used to compare: direct 

classifier (using k-NN classifier without alignment), transfer 

component analysis (TCA, a state-of-the-art DA method) and 

LapSVM method (a typical kernel method in DA). TCA and 

LapSVM are compared because both of them have ability to 

compute the mapping matrix as well as the proposed method. 

Three aspects will be tested and analysed: classification 

performance on different data set (GF1 images and GF2 images), 

separability of data in alignment space, and the influence of the 

segmentation scale parameter. Classification accuracy will be 

calculated by running 20 times and take the mean to eradicate 

any discrepancies. Because the scenes of GF1 and GF2 data sets 

are so big that experiment result (only the result images) cannot 

display the details, only same small places of result images are 

used to be shown. The small areas used for showing are shown 

in Fig. 5b and Fig.5f (red box). 

 

3.3 Experiment results and analysis 

3.3.1 Alignment performance analysis 

 

Fig. 6 is scatter plots of all the images in original space (only 

RGB bands) and each color corresponds to a class. 300 pixels 

per class are selected in each source image and target image for 

the scatter plots. It’s easy to see that data from different class 

mix seriously and difficult to be classified. By comparing 

source and target image (Fig.6a and Fig.6b, Fig.6c and Fig.6d), 

same classes from two collection time are obviously different. 

That’s why directly classify the target image using labeled 

source image always has low classification accuracy. In another 

words, temporal alignment before multi-temporal classification 

is very necessary. 

 

Fig.7 are the scatter plots of object feature from target images 

(both GF1 and GF2) in alignment space mapped by the 

proposed majority voting manifold alignment. The training 

samples used in Fig.7 are same with the samples used to plot 

Fig.6. In Fig.7 (in alignment space), the distances between 

different classes are enlarged, and the class separability is 

enhanced significantly. That mean the alignment parts of our 

proposed method (Majority voting manifold alignment) works 

well. 
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(a) Source image of GF1           (b) Target image of GF1 

 
(c)  Source image of GF2           (d) Target image of GF2 

Fig.6 Scatter plots in original space (RGB bands) on 2 data sets. 

 

   
(a) Target object feature GF1        (b) Target object feature GF2 

Fig.7 Scatter plots of the three first dimensions of target object 

feature in the alignment space on two data sets. 

 

3.3.2 Classification performance 

 

Table I is the classification accuracy of the two GF data sets. In 

the experiment, 100 samples of each class are used in the first 

three methods (direct classification, TCA and Lapsvm). For our 

object-based method, 10 objects of each class are used. In Table 

I, our method has the higher classification accuracy both on 

GF1 and GF2 data sets than the traditional methods. Fig.8 and 

Fig.9 are the classification maps on the small GF1 and GF2 data 

sets. Our object-based method has better result map and can 

overcome the “pepper and salt” problem on both data sets. 

 

Table I Classification accuracy of the 2 GF data sets. 

data direct TCA Lapsvm OUR 

GF1 44.04 62.80 67.55 75.44 

GF2 26.09 62.44 71.07 82.25 

 

 
(a) Direct                                (b) Lapsvm 

 
(c) TCA                                   (d) OUR 

Fig.8 Classification maps on the small GF1 data sets. 

  
(a) Direct                                      (b) Lapsvm 

  
(c) TCA                                           (d) OUR 

Fig.9 Classification maps on the small GF2 data sets. 

 

3.3.3 Segmentation scale impact analysis 

 

As traditional object-based classification method, segmentation 

scale also has obviously effect on multitemporal high resolution 

classification. For testing relationship between the scale 

parameter and the classification performant, four segmentation 

scales (superpixels number for whole image, cut into 7000, 

10000, 20000 and 40000 respectively) are tested on GF1 data 

set. Fig.10 is the segmented images of the using SLIC method. 

Table II is the classification accuracy on different segmentation 

scales. With the number of superpixel reducing, the accuracy 

increases gradually. Fig.11 is the corresponding classification 

maps to Fig.10 and Table II. “pepper and salt” problem has 

been improved better with small superpixels number. 

 

  
(a) 7000                                      (b) 10000 

  
(c) 20000                                    (d) 40000 

Fig.10 Segmentation result of different scales on small GF1 data.  

 

Table II Classification accuracy of different segmentation scales. 

data 7000 10000 20000 40000 

GF1 82.25 79.04 78.63 74.89 

 

  
(a) 7000                                      (b) 10000 

 
(c) 20000                                    (d) 40000 

Fig.11 Classification maps of different segmentation scales. 
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4. CONCLUSION

In this paper, an object-based multi-temporal high resolution 

images classification method is proposed. The main idea of 

proposed method is overcoming the “salt and pepper” problem 

and overlap problem in high resolution multitemporal images. 

SLIC segmentation is used and Majority voting manifold 

alignment is proposed for achieving this goal. Two groups of 

GF data sets are collected for evaluation. The experimental 

results validated the effectiveness of the proposed method, and 

the results also show that the proposed methods not only 

outperform the pixelwise multi-temporal images classification 

methods (TCA and LapSVM) obviously, but also effectively 

overcome the problem of “pepper and salt”. 
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