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ABSTRACT: 

LiDAR data acquisition is recognized as one of the fastest solutions to provide basis data for large-scale topographical base maps 

worldwide. Automatic LiDAR processing is believed one possible scheme to accelerate the large-scale topographic base map provision 

by the Geospatial Information Agency in Indonesia. As a progressive advanced technology, Geographic Information System (GIS) 

open possibilities to deal with geospatial data automatic processing and analyses. Considering further needs of spatial data sharing and 

integration, the one stop processing of LiDAR data in a GIS environment is considered a powerful and efficient approach for the base 

map provision. The quality of the automated topographic base map is assessed and analysed based on its completeness, correctness, 

quality, and the confusion matrix. 

1. INTRODUCTION

1.1 Background 

Nowadays, most governments utilize 80% of spatial thinking in 

various activities (O’Looney, 2000), such as environment 

conservation, disaster management, urban planning, and 

management of nation-wide developments. Many experts in 

geographic information systems (GIS) believe they have a 

powerful information and tool at their disposal to support and 

benchmarking Sustainable Development Goals (SDGs).  

LiDAR point clouds are recognized as precise tools to produce 

reliable large-scale geospatial information with high accuracy 

and precision. In geospatial technology, there is an escalation of 

wide range use of LiDAR applications worldwide for vegetation 

monitoring, resource management, infrastructure assessment, 

hazard modelling and many more. Unfortunately, the traditional 

way of using the LiDAR data to produce large-scale basic 

geospatial information as shown in base maps still has some 

major issues related to the processing time, efficiency, and cost, 

especially for wide heterogeneous landscape areas. Automated 

processing is believed as one of the possible ways to accelerate 

the base map provision and reduce the production costs. 

Most geospatial information is produced from complex 

workflows and each processing step involves different software, 

program, or environment workspace. The use of a Geographic 

Information System (GIS) provides an environment to handle 

huge datasets during  data visualisation, analyses, manipulation, 

and management. In recent years, GIS obtained a  higher ability 

to process remote sensing data and became more open to 

customization of automatic processing. Considering further 

needs of spatial data sharing and integration, the one stop 

processing of LiDAR data in a GIS environment is considered as 

a powerful and efficient approach for the base map provision. 

2. STUDY AREA AND DATA DESCRIPTION

2.1 Study Area 

The chosen study area is located in Maros suburb area, South 

Sulawesi Province (southern part of Sulawesi island) of 

Indonesia. The dimensions of the study area are 3.9 by 2.3 

kilometres or ±9 km². The selected study area has a 

heterogeneous land use structure with many paddy fields, ponds, 

trees, and built objects.  

2.2 Data Description 

There are two main components of data used in this study: 

a. Primary Input Data

The airborne LiDAR data acquired in   2012 using

Leica ALS70 instruments. The average point density is

between 3-4 m². The total number of LiDAR points for

the study area is almost 70,000,0000. The data is

projected in UTM 50S – WGS 1984.

b. Reference Data

The 1:10.000 base map data that is used as reference

data has a geometric accuracy better than 5 metres.

This reference data resulted from stereo-measurement

of aerial camera RCD30 images acquired in 2012 at the

same time as the LiDAR data.

3. METHODOLOGY

To achieve the objectives, there are assumptions applied in this 

study as described as below: 

a. This study extracts the geospatial information layers by

using LiDAR data only without any

additional/secondary dataset.
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b. The process is conducted as automatic as possible with 

less manual work. 

c. Data processing is conducted in a single GIS 

environment. 

d. The geospatial information layers produced in this 

study consist of buildings, water-bodies, the road 

network, and contour lines. All of those layers will be 

integrated and combined to build one topographical 

base map 

e. The basic geospatial information results are in vector 

format. 

 

3.1 LiDAR Point Classification 

Point cloud classification is the main part that determines the 

quality of the extracted features. The more accurate 

classification, the better feature extraction result. The point cloud 

classification is conducted fully automatically after assigning the 

parameter thresholds (minimum and maximum value) based on 

the characteristics of the study area. 

 

3.1.1 Ground Point Classification: Classification of low 

points has to be performed before ground point classification. 

The low points are isolated based on distance and height from the 

common point position.  

The ground and non-ground points are then classified using an 

adaptive TIN algorithm, also known as Progressive TIN 

Densification (PTD). The Adaptive TIN algorithm is an iterative 

process where a coarse TIN consisting of initial seed points is 

densified (Axelsson, 2000). After calculating all initial 

parameters and selecting the seed points, iterative densification 

is performed by calculating the parameters and adding the points 

below the threshold.  

 

 
Figure 1. Cross-section view of ground and non-ground 

classification 

 

3.1.2 Building Classification: The non-ground points that 

resulted from the previous step is then used as the input for 

building point classification. In this study, building points are 

filtered based on planarity. There are a few parameters used in 

this planar growing algorithm, such as point height range, slope 

range, orthogonal distance to the plane, moving growing window 

area, plane length, and plane fit. It is necessary to set up a precise 

minimum and maximum threshold for each parameter based on 

the data characteristic within the study area. 

First, only some points within a certain range of defined heights 

are considered as building points. The plane length constructs a 

moving window area (the side length of the area is two times of 

the plane length). A points within the growing window is 

considered if its orthogonal distance to the surface is less than the 

given threshold. Plane fit parameter, which defines the standard 

deviation value of the residuals of the fitted points to the plane, 

filters the points by neglecting the points that have a higher value 

than the given threshold. A slope with a value outside the given 

range is not considered a building roof plane. This method can 

also be classified as a surface growing method since the window 

is growing once all points within the window are considered as 

one plane and will stop when the growing window area exceeds 

the given threshold or if no more point is added to the plane. 

3.2 Intensity Image and nDSM Generation 

Every time the LiDAR sensor emits a pulse to the earth surface, 

the backscatter energy is reflected back and the strength of this 

reflected energy is stored as intensity information. This intensity 

information is then rasterized to generate an intensity image with 

1-meter spatial resolution by using Binning interpolation and 

assigning the average value for all the points in the determined 

pixel size. The pixel size is defined by considering the 3-4 times 

of the average LiDAR point spacing in the study area. 

 

In this study, both DTM and DSM are generated from the 

classified LiDAR point clouds by using IDW (Inversed Distance 

Weighting) interpolation. IDW allows faster calculation than 

other interpolation algorithms while maintaining the precision. 

The DTM data is then subtracted from the DSM to generate the 

normalized DSM (nDSM). 
 

  
(a) DSM (b) DTM 

 
(c) nDSM 

Figure 2. The DSM, DTM and nDSM data of the study area 
. 

3.3 Feature Extraction and Vectorization 

Each base map layer (buildings, road networks, and water bodies) 

requires a different methodological approach. The building layer 

extraction starts with LiDAR point cloud classification, 

rasterization of classified building points, vectorization, size 

filtering, and aggregation. The road networks is generated by 

using the SVM (Support Vector Machine) classifier on a  

segmented intensity image, DTM, and nDSM. Some data 

manipulation (building subtraction, vectorization, size filtering, 

and aggregation) still need to be applied to create more accurate 

and reliable road networks layer. The water-bodies layer is 

detected from the hole or NoData in the intensity image. 

 

3.3.1 Building Extraction: The building feature extracted in 

this study is represented by the roof outline. The building roof 

delineation in this study utilizes the result of LiDAR point clouds 

classification. Moreover, in order to have a more accurate result, 

we only consider single pulse classified building points to be 

converted into raster image. This building outline extraction 

method is chosen because using the classified LiDAR point 

clouds directly is considerably faster, easier, and better than using 

the machine classifier. 
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Figure 3. The building extraction methodologies 

3.3.2 Road and Water bodies Extraction: A Support Vector 

Machine (SVM) classifier is applied to classify the Road and 

Non-Road class. For this purposes, the intensity image is 

clustered by applying segmentation based on the Mean Shift 

(MS) approach, which during a  previous study resulted in 

accurate extraction. The MS algorithm is an unsupervised 

clustering-based segmentation which the number and the shape 

of the data clusters are unknown a priori (Tao and Zhang, 2007). 

Successive computation of the MS algorithm is started by a 

kernel density computation to shift each pixel image to the 

average of pixel in its neighbourhood and it stops when each 

pixels mean sequence has converged. Then, the segmentation 

phase starts by delineating the convergence segment. More than 

one hundred training areas are generated from the segmented 

intensity image as supervised learning for SVM classifier with 

300 samples. The segmented intensity image and DTM data are 

used as the input data in the SVM classification. The result of the 

classified SVM image is then subtracted from the result of  then 

nDSM Random Tree to remove the high objects such as buildings 

or trees.  

 

Figure 4. The road and water-bodies extraction methodologies 

 

Laser pulses are often absorbed by water,  creating holes in the 

point cloud data or in the intensity image. This study took 

advantage of holes in LiDAR point clouds and the NoData values 

in the intensity image to classify water bodies and estimates water 

body boundaries. Water-bodies are reclassified from the intensity 

image into two classes, the NoData as water class and other value 

for non-water class. 

Both of the SVM classified raster and the reclassified intensity 

image is converted into vector data based on the cell size and cell 

value. The size filtering is carried out by put a reasonable 

threshold to minimize noise. The final step is aggregating each 

vector data to fill in gaps inside polygons and join possible 

contiguous object polygons. 

4. RESULT AND DISCUSSION 

A visual comparison of four geospatial information features 

(buildings, water-bodies, road network, and contour lines) of the 

resulted data and reference data is shown in Figure 5. 

 

  

Figure 5. Comparison the reference data (left) and the resulted 

data (right) 

The result of this study is analysed and compared by using a 

1:10.000 base map. In order to assess the quality and evaluate the 

accuracy of geospatial information layers resulting from this 

study, there are two different quantitative approach: 1. Confusion 

matrix (Kappa Index), 2. Completeness, correctness, and quality 

compare to the reference data. 

4.1 Confusion Matrix (Kappa Index) 

This matrix provides a cross tabulation of the class label 

predicted by the classification analysis against that observed in 

the reference data in the study area (Strahler et. al., 2006).  

Confusion matrix is performed by using random sampling points 

by considering the polygon size and shape. Therefore, different 

numbers of sampling points are assigned for building, road and 

water bodies polygons. There are three classes calculated in the 

confusion matrix: Buildings (B), Road Networks (R), and Water 

bodies (W). The present of unclassified object (U), as the 

additional class, is added to describe the non-detected object 

areas in the resulted data. 

CLASS 
Reference Source 

Row 

Total 

Commis

sion 

User 

Acc 

B R W U    

R
es

u
lt

 D
at

a 

B 4393 0 1 
1564 

5188 0.153 0.847 

R 447 267 0 26 740 0.604 0.361 

W 1 0 329 715 1045 0.001 0.315 

U 794 26 715 - - - - 

Column 

Total 5635 293 1045 

- 

6907 

  

- 

 - 

  

Omission 0.080 0.000 0.001 -    -  -  

Producer 

Acc 
0.780 0.911 0.315 

- 
Overall Accuracy: 0.713 

Table 1. Confusion matrix result 

Table 1. shows that Overall Accuracy (OA) of the classification 

result is 71.3% and it means that about 67.8% points are correctly 

classified and 28.7% are assigned with errors. Based on the user 

and producer accuracy result, the water class has the poorest 

accuracy and reliability (31.5%). The road network has low 

reliability (36.1%) but has highest accuracy (99.1%). It means 

that almost 91.1% of road network in the result data are correctly 

classified as road network but only about 36.1% of road network 

in the result data are correctly identified.  

The result of Kappa Index (KI) in this study is -0.205, which 

indicates a very poor agreement between the reference and the 

result data. The reason of large different result of OA and KI is 

that buildings class, as the dominant area in the map, is well 

classified while there are many errors for water bodies class. This 

is why the use of KI still arguable since some Remote Sensing 

scientist are not recommend to use KI for the assessment of map 

accuracy (Olofsson et. al., 2013).  
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4.2 Completeness and Correctness 

The completeness and correctness assessment is calculated based 

on the comparison of the area between the existed objects in the 

reference data and the detected objects in the data result for each 

layers.  

There are three cases to calculate the map quality in this study: 

- True Positive (TP), overlap area between the resulted and 

reference data. 

- False Positive (FP), object only found in the reference data.  
- False Negative (FN), object only found in the resulted data.  

 
Figure 6. Definition of three different polygon cases 

Each cases are applied in the equations as follows: 

Branching Factor   = 𝐹𝑃/𝑇𝑃  
Miss Factor    = 𝐹𝑁/𝑇𝑃  
Completeness Percentage   = 𝑇𝑃/(𝑇𝑃+𝐹𝑁) * 100% 
Correctness Percentage   = 𝑇𝑃/(𝑇𝑃+𝐹𝑃) * 100% 
Quality Percentage   = 𝑇𝑃/(𝑇𝑃+𝐹𝑃+𝐹𝑁) * 100% 

 
 Building 

Areas 
(m²) 

Road 

Networks 
(m²) 

Water 

Bodies  
(m²) 

True Positive (TP) 473629.275 295052.742 162302.929 

Flase Positive (FP) 146645.188 492516.294 27539.592 

False Negative (FN) 117418.976 59532.031 356755.966 

Table 2. Total count of each object layer in the study area 

 

 Buildings  Road 

Networks 

Water 

Bodies 
Branching Factor 0.31 1.67 0.17 
Miss Factor 0.25 0.20 2.20 
Completeness  (%) 80.13 83.21 31.27 
Correctness  (%) 76.36 37.46 85.49 
Quality (%) 64.20 34.83 29.69 

Table 3. Assessment result for different object features 

The road network has highest completeness (83.21%) while the 

water-bodies has highest correctness (85.49%) and highest 

quality is achieved by building layer (64.20%).  
 

The water bodies class have a better branching factor but a higher 

miss factor, which means water bodies are not easily classified 

but have high ability to detect the object precisely. Water bodies 

achieve highest correctness and it means that laser pulses, which 

not reflected back to the sensor  accurately  indicate the presence 

of water in the surface. In contrary, the high completeness value 

is achieve by road networks class but has low correctness or are 

mis-classified. The highest quality is achieved by building class 

since it has good and balance of completeness and correctness 

value.  

4.3 Discussion 

4.3.1 Buildings: There are some over-classifications of 

building objects since some of trees or high vegetation are 

classified as building points. Applying a texture-based 

classification should improve building classification.  

 

  

(a) Building polygons of 

result data 
(b) Building polygons of 

reference data 
Figure 7. Comparison of buildings polygons  

(© coloured image by ESRI) 

 

4.3.2 Road Networks: The similar elevation, surface texture, 

and intensity value might cause the inundated rice fields is 

detected as road surface. The example of this misclassification is 

shown in Figure 8.  

 

  

Figure 8. Inundated rice field classified as road  

(© coloured image by ESRI) 

One of the main reasons for the low classification result is that 

the road extraction algorithm mainly relies on a good 

segmentation. In this study, many lush trees located along the 

road corridor often result in a discontinuous road cluster or 

segment.  

The correctness value of road network classification is influenced 

by a high percentage of over-classification. This is because some 

of the detected road networks are not present in the reference 

data. The human interpretation factor plays an important role in 

the presence of road network in the reference data and cause some 

machine classifications to result in an error. In other words, the 

human brain is able to associate and describe areas based on their 

usage or function while the machine identifies and describes the 

areas based on their surface parameter calculation. As shown in 

Figure 9, the looped area is interpreted as parking lots since the 

human interpretation classifies based on its function, while the 

machine classified the looped area as road since it has same 

height, intensity value, and texture. 
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4.3.3 Water-bodies: Unidentified water-bodies in certain 

areas are caused by similar intensity and heights value with roads. 

The low statistical results is also caused by the over-classification 

of water bodies boundaries by human interpreter in the reference 

data since they use the association interpretation key. For 

example, some paddy fields in Figure 10. are defined as water 

bodies in the reference data because the human interpreter did the 

association with the neighbouring areas, which sometimes 

incorrect. Thus, the hole in LiDAR data is an accurate indicator 

for water bodies but more parameters needed to delineate the 

outline precisely. 

(a) coloured

image of the area 

(b) water bodies in

result data

(c) water bodies in

reference data

Figure 10. Identification of water bodies  area 

(© coloured image by ESRI) 

5. CONCLUSION AND RECOMMENDATION

LiDAR data processing to produce large-scale base map in single 

GIS environment is applicable since   learning classifier 

algorithms and other useful functions are available. The 

automatic processing brought in this study still become the major 

issues since manual work is necessary to create and delineate 

hundreds of training samples for SVM classification. The data 

quality and distribution of the samples should be well defined and 

they should precisely represent the data, in order to achieve better 

results when performing machine learning classification.

Based on the assessment result and visual data comparison to the 

reference data, this study was able to define the limitations and 

indicate possible improvements during  further work. The use of 

optical image will reduce the misclassified building layer by 

separating  roofs and trees using the NDVI value. It is necessary 

to add possible parameters (such as shape or RGB value) to 

extract road networks more accurately, especially to separate 

roads from the flooded rice fields, since these have similar 

intensity values, textures, and heights. The water-bodies layer 

needs  improvement since not all ponds and lakes are detected as 

holes in LiDAR data. The use hydrologic modelling as well as 

defining the best weights and thresholds for the watershed flow 

parameters should improve the automatic streamline networks 

and riverbanks detection. 
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Figure 9. Comparison road vectors 
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