
CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS 

Yu. V. Vizilter*, A. Yu. Rubis, S.Yu. Zheltov 

State Research Institute of Aviation Systems (GosNIIAS), 

125319, 7, Viktorenko str., Moscow, Russia – (viz,arcelt,zhl)@gosniias.ru 

Commission II, WG II/5 

KEY WORDS: Change Detection, Mathematical Morphology, Guided filtering 

ABSTRACT: 

Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and 

sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-

similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version 

(difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some 

smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local 

contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on 

local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective 

guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian 

smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, 

morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are 

applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided 

contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting 

filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting 

filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals 

using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided 

contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. 

Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the 

best change detection result. 

1. INTRODUCTION

Change detection problem means detecting new or disappeared 

objects on images registered at different moments of time and 

possibly in various lighting, weather and season conditions. A 

lot of change detection techniques are developed for remote 

sensing applications (Singh et al., 1989; Hussain et al., 2013). 

Two main categories of change detection techniques are 

pointed: pixel-level and object-level. Pixel-based methods 

provide better computational efficiency. Object-based 

techniques provide the high detection quality. 

In this paper we propose new morphological filters, which 

improve the previously proposed change detection technique 

based on generalized ideas of Morphological Image Analysis 

(MIA) (Pyt’ev, 1993, Vizilter et al., 2016). Such morphological 

mid-level change detection provides some compromise between 

the computational efficiency of pixel-based methods and 

detection quality of object-based techniques. 

The practical contribution of this paper is a new set of selective 

guided contrasting filters based on different combinations of 

various smoothing operators (SO) and binary local similarity 

coefficients (BLSC). The theoretical contribution of this paper 

is the proof that selective guided contrasting satisfies the 

conditions of comparative filter stated in (Vizilter et al., 2016). 

2. RELATED WORKS

There are some well-known reviews of change detection 

approaches both classical and modern enough (Singh et al., 

1989; Hussain et al., 2013). In (Hussain et al., 2013) two main 

categories of methods are pointed: pixel-based change detection 

(PBCD) and object-based change detection (OBCD) techniques. 

The PBCD category of change detection methods contains the 

direct, transform-based and classification-based comparison of 

images at the pixel level. Some machine learning techniques are 

applied at the pixel level too. The OBCD category contains 

direct, classified and composite change detection at the object 

level. We start our brief overview from pixel-level techniques 

and then go to object-level comparison. 

The simplest direct image comparison technique is an image 

difference calculation from intensity values of original or 

transformed images (Lu et al., 2005). Since relative changes 

occur in both images, then the direction of image comparison 

should be selected (Gao, 2009). Image rationing forms regions 

that are not changed with ratio value approximately equal to 1 

(Howarth, Wickware, 1981). Image regression represents 

second image as a linear function of first one (Ludeke et al., 

1990). A regression analysis, such as least-squares regression, is 

used for identification of regression parameters (Lunetta, 1999). 

Changes are detected by subtracting regressed image from the 

original one. 

Transform-based imaged comparison presumes the analysis of 

transformed images. Change vector analysis (CVA) was 

developed for change detection in multiple image bands 

(Bayarjargal et al., 2006). Change vectors (CV) are calculated 

by subtracting pixel vectors of co-registered different-time 

dates. The direction and magnitude of CV correspond to the 

type and power of change. Principal component analysis (PCA) 

is applied for change detection in two main ways. The first one 

is to apply PCA to images separately and then compare them 

using differencing or rationing (Richards, 1984). The second 

way is to merge the compared images into one set and then 

apply the PCA transform. Principal components with negative 

correlation should correspond to changes in compared images 
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(Deng et al., 2008). Tasselled cap transformation (KT) is a 

particular case of spectral transform presented in (Kauth, 

Thomas, 1976). It produces stable spectral components which 

allows developing baseline spectral information for long-term 

studies of forest disturbances (Jin, Sader, 2005) or vegetation 

change (Rogan et al., 2002). Different texture-based transforms 

are developed and used, for example, for urban disaster analysis 

(Tomowski et al., 2011) and land use change detection (Erbek et 

al., 2004). 

 

Classification-based change detection contains the post-

classification comparison techniques and composite 

classification methods. Post-classification comparison presumes 

that images are first rectified and classified (Bouziani et al., 

2010). The supervised (Ji et al., 2006) or unsupervised 

classification (Ghosh et al., 2011) can be of use. Then the 

classified images are compared to measure changes. 

Unfortunately, the errors from individual image classification 

are propagated into the final change map, reducing the accuracy 

of change detection (Lillesand et al., 2008). In the composite or 

direct multidate classification (Lunetta, 1999), (Lunetta et al., 

2006) the rectified multispectral images are stacked together 

and PCA technique is often applied to reduce the number of 

spectral components to a fewer principal components (Mas, 

1999), (Singh, 1989). The minor components in PCA should 

represent changes (Collins et al., 1996). But due to the fact that 

temporal and spectral features are fused in the combined 

dataset, it is difficult to separate spectral changes from temporal 

changes in the classification (Schowengerdt, 1983). 

 

Machine Learning algorithms are extensively utilized in change 

detection techniques. Artificial Neural Networks (ANN) are 

usually trained by supervised learning on a large training dataset 

for generating the complex non-linear regression between input 

pair of images and output change map (Dal, Khorram, 1999). 

ANN approach was applied for land-cover change detection 

(Dal, Khorram, 1999), (Abuelgasim et al., 1999), forest change 

detection (Woodcock et al.) and urban change detection 

(Pijanowski et al, 2005). The Support Vector Machine (SVM) 

approach based on well-known SVM technique (Vapnik, 2000) 

considers the finding change and no-change regions as a binary 

classification problem (Huang et al., 2008). The algorithm 

learns from training data and automatically finds the binary 

classifier parameters in a space of spectral features (Bovolo et 

al, 2008). SVM approach is used for land cover change 

detection (Nemmour, Chibani, 2006) and forest cover change 

analysis (Huang et al., 2008). Some other machine learning 

techniques are applied for change detection via learning to 

change and non-change separation: decision tree (Im, Jensen, 

2005), genetic programming (Makkeasorn et al., 2009), random 

forest (Smith, 2008) and cellular automata (Yang et al., 2008). 

Object-based techniques operate with objects instead of pixels. 

The Direct Object change detection (DOCD) is based on the 

comparison of objects extracted form compared images. 

Changes are detected by comparing either geometrical 

properties (Lefebvre et al., 2008) or spectral information (Miller 

et al., 2005) or extracted features of the image objects (Lefebvre 

et al., 2008). In Classified Objects change detection (COCD) 

approach the extracted objects are compared based on 

information about both the geometry and the class membership 

(Chan, Kelly, 2009). OBCD framework based on post-

classification comparison was proposed in (Blaschke, 2005). 

Different algorithms like decision-tree and nearest neighbor 

classifier (Im, Jensen, 2005), fuzzy classification (Durieux et 

al., 2008), and maximum likelihood classification (MLC), are 

used for extracting objects and independently classifying them. 

Some applications of COCD is updating maps or GIS layers. 

COCD is applied for forest change detection (Hansen, 

Loveland, 2012), land cover and land use change analysis 

(Gamanya et al., 2009) and so on. Multitemporal-object change 

detection presumes that the joint segmentation is performed 

once for stacked (composite) images. In (Stow et al., 2008) the 

multi-temporal composite images are used both at segmentation 

and classification stages for map vegetation change objects. 

Clustering on multi-date objects for deforestation analysis if 

proposed in (Duveiller et al., 2008). 

 

There are some combined approaches those utilize different 

combinations of described ideas. In (Al-Khudhairy et al.,2005) 

particular, change detection is performed via differencing after 

PCA. In (Niemeyer, Nussbaum, 2006) the pixel-based 

information is combined with object-based information via 

pixel labeling based on statistical and semantical models.  

 

This work presents a new morphological filters, which improve 

the previously proposed change detection technique based on 

generalized ideas of Morphological Image Analysis (MIA) 

(Pyt’ev, 1993, Vizilter et al., 2016). Let’s note that terms 

“morphology”, “morphological filter” and “morphological 

analysis” refer to Mathematical Morphology (MM) proposed by 

Serra (Serra, 1982) as well as to MIA. These theories of shape 

have a common algebraic basis (lattice theory), but different 

tasks and tools. The overview of MIA and its relation to MM is 

given in (Vizilter et al., 2015). Morphological change detection 

approach is based on the analysis of morphological difference 

map formed as a difference between test image and its 

morphological projection to the shape of sample image. In our 

generalized approach the role of morphological projector is 

played by comparative morphological filter with weaker 

properties, which transforms the test image guided by the shape 

of sample image. The shape of sample image is described by 

mosaic segmentation or by local texture features of objects 

(regions). So, such morphological approach implements some 

important properties of object-level image comparison 

immediately in the pixel-level image filtering. Due to this, we 

can speak about the morphological mid-level change detection 

procedure. It should provide the desired compromise between 

the computational efficiency of pixel-based methods and 

detection quality of object-based techniques. 

 

3. METHODOLOGY 

This section describes the previous and proposed methodology. 

 

3.1 Guided contrasting filters 

The scheme Fig.1 demonstrates the main idea of this approach. 

Let two images are given: test image g(x,y) and sample (or 

reference) image f(x,y). The guided contrasting filter of g with 

respect to f can be formally described in the following form 
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where gS=Sg is a result of filtering of g by some smoothing 

operator S; o(x,y)  const – any constant-valued (flat) image; 

w(x,y) is a sliding window at position (x,y); a(f,gw(x,y)) is a local 

similarity coefficient (LSC) of test image fragment gw(x,y) with 

sample f. In order to provide the robustness relative to weak 

geometrical discrepancy of compared images practice we 
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proceed to guided contrasting filter with local search (in some 

search zone p(x,y)). 

 

 

Figure 1. The scheme of local guided contrasting. 

 

Morphological difference map (MDM) is calculated as 
 

 ),(),( ,,, fggfg pwaS .  (2) 

 

3.2 New set of selective guided contrasting filters 

We propose and implement new types of guided contrasting 

filters based on different combinations of various SO and LSC. 

 

Following “smoothing” operators are considered: 

- linear mean and Gaussian smoothing; 

- nonlinear rank filtering (min, max and median); 

- filters of mathematical morphology (opening and closing 

based on structuring elements) (Serra, 1982). 

 

In selective guided contrasting filters we use binary local 

similarity coefficient (BLSC) at(f,g
 w(x,y)){0,1} instead of 

a(f,g w(x,y)) in (1). It is formed via binarization of LSC with some 

fixed threshold t: 
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Following variants of LSC are considered as a basis of BLSC: 

 absolute value of linear correlation coefficient (LCC); 

 morphological correlation coefficient (MCC, 

Pyt’ev, 1993); 

 mutual information (MI, Maes, 1997); 

 local mean square MCC (MSMCC, Vizilter, Zheltov, 

2012); 

 geometrical correlation coefficients (GCC, Vizilter, 

Zheltov, 2012). 

 

Thresholding of LSC allows operating with non-normalized 

LSC, in particular, MI. Additionally, this thresholding of LSC 

enhance the selective properties of guided contrasting filter: 

details are either totally recovered or not recovered after the 

smoothing. Due to this such filters called “selective”. 

 

For all proposed selective guided contrasting filters we prove 

that some threshold t exists such that these filters satisfy the 

conditions of morphological comparative filter: stated in 

(Vizilter et al., 2016): 

 

 1)   ggf  , , 2)   fff  , ;  

 3)   oof  , . 

3.3 Mutual information 

Mutual information I(A,B) (Maes, 1997) estimates the 

dependence of two random variables A and B by measuring the 

distance between the joint distribution pAB(a,b) and the 

distribution of complete independence pA(a)pB(b): 
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where H(A) is an entropy of A, H(B) is an entropy of B, and 

H(A,B) is their joint entropy. For two image intensity values a 

and b of a pair of corresponding pixels in the two images, 

required empirical estimations for the joint and marginal 

distributions can be obtained by normalization of the joint (2D) 

and marginal (1D) histograms of compared image fragments. 

Different successful application were created based on this MI 

approach in recent years (Goebel, 2005). 

 

3.4 Morphological image analysis and geometrical 

correlation 

Morphological Image Analysis (MIA) proposed by Pytiev is 

based on geometrical and algebraic reasoning (Pyt’ev, 1993). In 

the framework of this approach images are considered as 

piecewise-constant 2D functions 
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where n – number of non-intersected connected regions of 

tessellation F of the frame , F={F1,…,Fn}; f=(f1,…,fn) – 

corresponding vector of real-valued region intensities; 

Fi(x,y){0,1} – characteristic (support) function of i-th region: 
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Set of images with the same tessellation F is a convex and close 

subspace FL2() called shape-tessellation, mosaic shape or 

simply shape: 
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For any image g(x,y)L2() the projection onto the shape F is 

determined as 
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Pytiev morphological comparison of images f(x,y) and g(x,y) is 

performed using the normalized morphological correlation 

coefficients of the following form 
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The first formula estimates the closeness of image g to the 

“shape” of image f. Second formula measures the closeness of 

image f to the “shape” of image f. For elimination of constant 

non-informative part of image brightness following image 

normalization is usually performed: 
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where PO f – projection of image f onto the “empty” shape O 

with one flat zone. This projection is a constant-valued image 

filled by mean value of projected image. 
 

In (Vizilter, Zheltov, 2012) the geometrical shape comparison 

approach was developed based on Pytiev’s morphological 

image analysis. Let f(x,y) from F is a piecewise-constant 2D 

function described above and image g(x,y) from G is an 

analogous 2D function with m as a number of tessellation 

regions G={G1,…,Gm}; g=(g1,…,gm) – vector of intensity 

values; Gj(x,y){0,1} – support function of j-th region. Let’s 

introduce following additional set of “S-variables”: S – area of 

the whole frame ; 
2

),( yxS Fii   – area of tessellation 

region Fi; 
2

),( yxS Gjj   – area of tessellation region Gj; 

 ),(  ),,( yxyxS GjFiij   – area of intersection FiGj. 

Mean square effective morphological correlation coefficient 

(MSEMCC) for shapes F and G is determined as 
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where K(Fi,Gj) = Sij / S – normalized influence coefficient for 

pair of regions Fi and Gj; 
KM

2(Gj,Fi) = Sij / Sj – square of normalized morphological 

correlation for pair of regions. 

 

4. EXPERIMENTS 

The results of experimental exploration of both comparative 

filtering and proposed change detection pipeline are reported in 

this section. In the first part of section some examples of guided 

contrasting and corresponding morphological difference map 

forming are demonstrated applying to real images for different 

scene types and change detection cases. In the second part the 

results of change detection experiments on the public 

benchmark containing simulated aerial images are described. 

 
4.1 Qualitative change detection experiments 

A lot of qualitative experiments with comparative filters based 

on guided contrasting are performed on a wide set of real 

images. Different types of scenes and image acquisition 

conditions are considered. Fig.2 demonstrate examples of 

morphological difference map forming based on comparative 

guided contrasting filtering with different combinations of 

various SO and LSC. Fig.3 demonstrates the example of the 

building construction case that requires comparison of buildings 

  
Reference image Test image 

  
Abs LCC+gaussian blur Abs LCC+mean 

  
Abs LCC+median Abs LCC+ Serra opening & closing 

  
MCC+gaussian blur MCC+mean 

  
MCC+median MCC+ Serra opening & closing 

  
MI+gaussian blur MI+mean 

  
MI+median MI+ Serra opening & closing 

  
MSMCC+gaussian blur MSMCC+mean 

  
MSMCC+ median MSMCC+ Serra opening & closing 

Figure 2. Example of morphological difference maps based on 

guided contrasting with various combinations of 

LSC and SO (outdoor video surveillance) 
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Reference image Test image 

  
Abs LCC+gaussian blur Abs LCC+mean 

  
Abs LCC+median Abs LCC+ Serra opening & closing 

  
MCC+gaussian blur MCC+mean 

  
MCC+median MCC+ Serra opening & closing 

  
MI+gaussian blur MI+mean 

  
MI+median MI+ Serra opening & closing 

  
MSMCC+gaussian blur MSMCC+mean 

  
MSMCC+ median MSMCC+ Serra opening & closing 

Figure 3. Example of morphological difference maps based on 

guided contrasting with various combinations of 

LSC and SO (building construction) 

  
Reference image Test image 

  
Abs LCC+gaussian blur Abs LCC+mean 

  
Abs LCC+median Abs LCC+ Serra opening & closing 

  
MCC+gaussian blur MCC+mean 

  
MCC+median MCC+ Serra opening & closing 

  
MI+gaussian blur MI+mean 

  
MI+median MI+ Serra opening & closing 

  
MSMCC+gaussian blur MSMCC+mean 

  
MSMCC+ median MSMCC+ Serra opening & closing 

Figure 4. Example of morphological difference maps based on 

guided contrasting with various combinations of 

LSC and SO (remote sensing) 
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at different stages of construction based on images captured in 

different weather and season conditions from the close but not 

exactly the same viewpoint. In the Fig.4 the examples of 

outdoor video surveillance change detection case are shown. 

Such cases qualitative experiments of comparative filtering with 

various combinations of thresholded LSC and SO allow 

concluding that most variations provides reasonable scene 

change proposals and demonstrates the enough robustness 

relative to changes in lighting and other image capturing 

conditions. Interesting results are obtain with thresholded MI 

combinations (Fig.3) where the difference maps contains only 

pronounced changes. Also, it should be noted that filtering with 

MSMCC as LCC is not robust due to the segmentation step to 

forming the mosaic shapes (4) of etalon and test images. 

 

As noted in (Vizilter et al., 2016), some additional analysis of 

formed morphological difference map is needed for final testing 

of the formed change proposals based on other type of task-

specific information and guided contrasting filtering and 

corresponding morphological difference maps can be useful as 

parts of different task-oriented change detection pipelines.  

 

4.2 Quantitative change detection experiments 

All proposed guided contrasting filters are tested as a part of 

previously proposed change detection pipeline (Vizilter et al., 

2016). It contains the following steps: 

 

1. Guided contrasting (1) using the image pyramid; 

2. Calculation of morphological difference map (2); 

3. Binarization and filtering of MDM; 

4. Forming change proposals; 

5. Testing change proposals using local MCC; 

6. Forming the output binary map of changes. 

 

In our experiments with proposed change detection pipeline for 

long-range remote sensing we use the public Change Detection 

dataset introduced in (Bourdis et al., 2011) (Fig.5). This dataset 

contains 1000 pairs of 800x600 simulated aerial images and 

1000 corresponding 800x600 ground truth masks. Each pair 

consists of one reference and one test image. Some of image 

pairs contain scene changes and illumination differences. The 

dataset consists of 100 different scenes with moderate surface 

relief and several objects (trees, buildings etc.). Each scene is 

rendered with various viewpoints. The cameras are distributed 

at steps of 10 degrees on a circle of radius 100 meters at 

approximately 250 meters high, and with a fixed tilt of about 70 

degrees. All images are modelled with a ground resolution of 

about 50cm per pixel. 

 

The methodology of our experiments is the following. We select 

a subset of 100 reference and test image pairs for 50 different 

scenes with 0 degrees relative camera angle. As proposed in 

(Bourdis et al., 2011) we compare the detection results with 

respect to the ground truth at pixel level, but calculate the 

precision and recall values at the object (region) level. In order 

to do this, we from the list of ground truth objects and list of 

detected objects (accepted regions of filtered binarized 

morphological difference map). Then we perform the object-to-

object comparison via computing of object intersection area. If 

the intersection area is more than 50% then we decide that 

objects match each other. The numbers of true and false object 

detections determine the corresponding precision and recall 

values. 

 

We implement and test our pipeline with following parameters: 

guided contrasting window size is 77 pixels; number of 

pyramid levels is 3; the size of disk structuring element in MM 

opening and closing is 5 pixels, the threshold value for 

morphological correlation coefficient at the final testing step is 

0.5.  

  
a) b) 

 
c) 

Figure 5. Example of simulated data from benchmark:  

a) reference image; b) test image; c) ground truth 

mask. 

Comparative filter Precision Recall 

Abs LCC+Serra opening & closing 0.72 0.71 

MCC+median 0.69 0.7 

Abs LCC+median 0.68 0.73 

MCC+Serra opening & closing 0.67 0.63 

MCC+mean 0.63 0.6 

Abs LCC+mean 0.62 0.6 

Diffusion filtering  

(Vizilter et al, 2015) 

0.61 0.6 

MCC+gaussian blur 0.55 0.51 

MI+median 0.53 0.5 

MI+Serra opening & closing 0.53 0.48 

MI+mean 0.52 0.49 

Constrained optical flow 

(Bourdis et al.,2011) 

0.51 0,52 

MSMCC+Serra opening & closing 0.48 0.45 

MI+gaussian blur 0.45 0.42 

MSMCC+median 0.43 0.47 

MSMCC+mean 0.43 0.44 

MSMCC+gaussian blur 0.4 0.45 

Abs LCC+gaussian blur 0.4 0.41 

Table 1. Results of quantitative experiments 

Results of quantitative experiments demonstrates that 

comparative filtering based on guided contrasting with 

considered variations of thresholded LSC and SO parameters is 

generally better, than approaches (Vizilter et al, 2015), (Bourdis 

et al.,2011), excepting filter with MSMCC as LSC. As noted 

above (sect.4.1) we observe low robustness because there is the 

segmentation procedure for forming the mosaic shapes (4) of 

input images in the pipeline. Combinations with LCC and non-

linear smooth operators of median and Serra’s opening and 

closing gives the best results in the experiments. 

 

5. CONCLUSION 

We propose and implement new set of selective guided 

contrasting filters based on different combinations of various 

smoothing filters and thresholded local similarity coefficients. 

Qualitative experiments demonstrate their applicability and 

robustness relative to lighting changes and weak geometrical 
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discrepancy of compared images. Quantitative experiments on 

the public benchmark containing simulated aerial images 

demonstrate that the best change detection rate is provided by 

selective guided contrasting based on non-linear smoothing 

operators (median and Serra’s morphological opening and 

closing) and thresholded normalized linear and morphological 

correlation for detail recovery. 
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